• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 406
  • 309
  • 42
  • 35
  • 15
  • 12
  • 10
  • 10
  • 10
  • 10
  • 6
  • 5
  • 5
  • 5
  • 5
  • Tagged with
  • 944
  • 345
  • 145
  • 145
  • 128
  • 107
  • 96
  • 91
  • 87
  • 85
  • 80
  • 67
  • 66
  • 66
  • 60
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Some results on biorthogonal wavelet matrices and their applications

黃永樑, Wong, Wing-leung. January 2000 (has links)
published_or_final_version / Mathematics / Master / Master of Philosophy
2

On framelets and their applications: a discrete approach

Sze, Chuen-kan., 施泉根. January 2004 (has links)
published_or_final_version / abstract / toc / Mathematics / Doctoral / Doctor of Philosophy
3

Some results in wavelet theory and their applications

張英傑, Cheung, Ying-kit, Alan. January 1997 (has links)
published_or_final_version / Mathematics / Master / Master of Philosophy
4

Some results on biorthogonal wavelet matrices and their applications /

Wong, Wing-leung. January 2000 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2000. / Includes bibliographical references (leaves xiii-xix).
5

Some results in wavelet theory and their applications /

Cheung, Ying-kit, Alan. January 1997 (has links)
Thesis (M. Phil.)--University of Hong Kong, 1998. / Includes bibliographical references (leaf 53).
6

Some results on biorthogonal wavelet matrices and their applications

Wong, Wing-leung. January 2000 (has links)
Thesis (M.Phil.)--University of Hong Kong, 2000. / Includes bibliographical references (leaves xiii-xix) Also available in print.
7

Theory and application of frequency selective wavelets /

Tomas, Brian. January 1992 (has links)
Thesis (Ph. D.)--University of Washington, 1992. / Vita. Includes bibliographical references (leaves [75]-76).
8

Aproximações multiresolução e bases ortonormais wavelet de L2 (R)

Aseka, Ivanilda Basso January 1995 (has links)
Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro de Ciencias Fisicas e Matematica / Made available in DSpace on 2012-10-16T08:47:38Z (GMT). No. of bitstreams: 0Bitstream added on 2016-01-08T19:25:51Z : No. of bitstreams: 1 99946.pdf: 1632897 bytes, checksum: 0e51a6b533c328f8cb3c4ae44abd3845 (MD5) / Estudo da caracterização e propriedades de uma aproximação multiresolução. É mostrada a existência de uma função em L² (R) tal que suas translações e dilatações formam uma base ortonormal da aproximação multiresolução. A caracterização da aproximação multiresolução se dá através de uma função 2p - periódica e, reciprocamente, sob certas condições, podemos, a partir de uma função 2p - periódica, obter uma aproximação multiresolução. É mostrado, também, que, a partir de uma aproximação multiresolução, podemos construir uma função, tal que suas translações e dilatações geram uma base ortonormal de L² (R). Essa função é chamada de Wavelet, e a base gerada de base gerada Wavelet.
9

Frames de wavelets

Rachelli, Janice January 1995 (has links)
Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro de Ciencias Fisicas e Matematicas / Made available in DSpace on 2012-10-16T08:49:47Z (GMT). No. of bitstreams: 0Bitstream added on 2016-01-08T19:34:13Z : No. of bitstreams: 1 99949.pdf: 1839807 bytes, checksum: 6c279f29fc4c75b84f85a4b5ddc3df75 (MD5) / Expansões não necessariamente ortogonais de funções no espaço de Hilbert das funções reais quadrado integráveis, através de uma família de funções gerada a partir de uma única função Wavelet. Se a família gera um frame, então para qualquer função f no espaço de Hilbert citado, existe uma expansão semelhante à expansão ortogonal.
10

A multiresolutional approach to the construction of spline wavelets

Rohwer, Birgit 04 1900 (has links)
Thesis (MSc) -- University of Stellenbosch, 2000. / ENGLISH ABSTRACT: In this thesis we study a wavelet construction procedure based on a multiresolutional method, before specializing to the case of spline wavelets. First, we introduce and analyze the concepts of scaling functions and their duals, after which we analyze the multiresolutional analysis (MM) which they generate. The advantages of orthonormality in scaling functions are pointed out and discussed. Following the methods which were introduced in two standard texts of Chui, we next show how a minimally supported wavelet and its dual can be explicitly constructed from a given MM, thereby yielding an orthogonal decomposition of the space of square-(Lebesgue)integrable functions on the real line. We show that our method applied to orthonormal scaling functions also yields orthonormal wavelets, including as a special case the Daubechies wavelet. General decomposition and reconstruction algorithms are explicitly formulated, and the importance of the vanishing moments of a wavelet in practical applications is shown. We next introduce and analyze cardinal B-splines, in particular showing that these functions are refinable, and that they satisfy the criteria of Riesz stability. Thus the cardinal B-spline is an admissible choice for a scaling function, so that the previously developed wavelet construction procedure based on a MM yields an explicit formula for the minimally supported B-spline wavelet. The corresponding vanishing moment order is calculated, and the resulting ability of the B-spline wavelet to detect singularities in a given function is demonstrated by means of a numerical example. Finally, we develop an explicit procedure for the construction of minimally supported B-spline wavelets on a bounded interval. This method, as developed in work by de Villiers and Chui, is then compared with a previous boundary wavelet construction method introduced in work by Chui and Quak. / AFRIKAANSE OPSOMMING: In hierdie tesis bestudeer ons 'n golfie konstruksieprosedure wat gebaseer is op 'n multiresolusiemetode, voordat ons spesialiseer na die geval van latfunksie-golfies. Eerstens word die konsepte van skaalfunksies en hulle duale bekendgestel en geanaliseer, waarna ons die multiresolusie analise (MM) wat sodoende gegenereer word, analiseer. Die voordeel van ortonormaliteit by skaalfunksies word uitgewys en bespreek. Deur die metodes te volg wat bekendgestel is in twee standaardtekste van Chui, wys ons vervolgens hoe 'n minimaal-gesteunde golfie en die duaal daarvan eksplisiet gekonstrueer kan word vanuit 'n gegewe MM, en daarmee 'n ortogonale dekomposisie van die ruimte van kwadraties-(Lebesgue)integreerbare funksies op die reële lyn lewer. Ons wys dat ons metode toegepas op ortonormale skaalfunksies ook ortonormale golfies oplewer, insluitende as 'n spesiale geval die Daubechies golfie. Algemene dekomposisie en rekonstruksie algoritmes word eksplisiet geformuleer, en die belangrikheid in praktiese toepassings van 'n golfie met die nulmomenteienskap word aangetoon. Vervolgens word kardinale B-Iatfunksies bekendgestel, en word daar in die besonder aangetoon dat hierdie funksies verfynbaar is, en dat hulle aan die Rieszstabiliteit vereiste voldoen. Dus is die kardinale B-Iatfunksie 'n toelaatbare keuse vir 'n skaalfunksie, sodat die golfie konstruksieprosedure gebaseer op 'n MM, soos vantevore ontwikkel, 'n eksplisiete formule vir die minimaal-gesteunde Blatfunksiegolfie oplewer. Die ooreenkomstige nulmomentorde word bereken, en die gevolglike vermoë van 'n B-Iatfunksiegolfie om singulariteite in 'n gegewe funksie raak te sien en uit te wys word gedemonstreer deur middel van 'n numeriese voorbeeld. Laastens ontwikkelons 'n eksplis.iete prosedure vir die konstruksie van minimaal-gesteunde B-Iatfunksiegolfies op 'n begrensde interval. Hierdie metode, soos ontwikkel in werk deur de Villiers en Chui, word dan vergelyk met 'n vorige randgolfie konstruksie wat bekendgestel is in werk deur Chui en Quak.

Page generated in 0.0409 seconds