• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 10
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 34
  • 34
  • 12
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Plane-Wave Scattering of a Periodic Corrugated Cylinder

Unknown Date (has links)
In this dissertation, a novel approach to modeling the scattered field of a periodic corrugated cylinder, from an oblique incident planewave, is presented. The approach utilizes radial waveguide approximations for fields within the corrugations, which are point matched to approximated scattered fields outside of the corrugation to solve for the expansion coefficients. The point matching is done with TMz and TEz modes simultaneously, allowing for hybrid modes to exist. The derivation of the fields and boundary conditions used are discussed in detail. Axial and radial propagating modes for the scattered fields are derived and discussed. Close treatment is given to field equations summation truncation and conversion to matrix form, for numerical computing. A detailed account of the modeling approach using Mathematica® and NCAlgebra for the noncommutative algebra, involved in solving for the expansion coefficients, are also given. The modeling techniques offered provide a full description and prediction of the scattered field of a periodic corrugated cylinder. The model is configured to approximate a smooth cylinder, which is then compared against that of a textbook standard smooth cylinder. The methodology and analysis applied in this research provide a solution for computational electromagnetics, RF communications, Radar systems and the like, for the design, development, and analysis of such systems. Through the rapid modeling techniques developed in this research, early knowledge discovery can be made allowing for better more effective decision making to be made early in the design and investigation process of an RF project. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2017. / FAU Electronic Theses and Dissertations Collection
32

Plane-Wave Scattering of a Periodic Corrugated Cylinder

Unknown Date (has links)
In this dissertation, a novel approach to modeling the scattered field of a periodic corrugated cylinder, from an oblique incident planewave, is presented. The approach utilizes radial waveguide approximations for fields within the corrugations, which are point matched to approximated scattered fields outside of the corrugation to solve for the expansion coefficients. The point matching is done with TMz and TEz modes simultaneously, allowing for hybrid modes to exist. The derivation of the fields and boundary conditions used are discussed in detail. Axial and radial propagating modes for the scattered fields are derived and discussed. Close treatment is given to field equations summation truncation and conversion to matrix form, for numerical computing. A detailed account of the modeling approach using Mathematica® and NCAlgebra for the noncommutative algebra, involved in solving for the expansion coefficients, are also given. The modeling techniques offered provide a full description and prediction of the scattered field of a periodic corrugated cylinder. The model is configured to approximate a smooth cylinder, which is then compared against that of a textbook standard smooth cylinder. The methodology and analysis applied in this research provide a solution for computational electromagnetics, RF communications, Radar systems and the like, for the design, development, and analysis of such systems. Through the rapid modeling techniques developed in this research, early knowledge discovery can be made allowing for better more effective decision making to be made early in the design and investigation process of an RF project. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2017. / FAU Electronic Theses and Dissertations Collection
33

Perforance evaluation of vehicle radiofrequency communication systems : contribution to the modelling approach / Contribution à la modélisation des performances des systèmes de communications sans fil embarqués dans les véhicules automobiles

Narrainen, Jessen 07 March 2017 (has links)
Le cadre général de cette thèse porte sur les communications véhicule à véhicule (V2V). L'objectif principal de ce type de communication est d'améliorer la sécurité routière et d'optimiser la fluidité du trafic. Les performances de systèmes de communication embarqués dépendent principalement de la configuration des antennes, du type de récepteurs utilisés (modem) et du canal de propagation. Le sujet de la thèse se concentre précisément sur l'élaboration d'un outil de simulation robuste et fiable pour optimiser les choix technologiques d'antennes et leurs implantations à bord. Il permettra de limiter ainsi le recours aux prototypes et aux essais de roulage. Dans un premier temps, nous avons proposé une méthode de type géométrique-stochastique pour modéliser des canaux de propagation d'un système de communication V2V. Cette méthode permet de définir des scénarios dynamiques et sa flexibilité nous offre l'opportunité de paramétrer les caractéristiques d'un canal de propagation. Nous montrons pour l'essentiel de quelle manière l'agencement et le nombre de diffuseurs de forme simple peuvent contribuer à influencer les statistiques de l'étalement des retards, la distribution des angles d'arrivée et les spectres Doppler. Dans la deuxième partie de ces travaux, nous nous focalisons sur la problématique d'intégration d'antenne. Il a été constaté qu'il est particulièrement utile de simplifier la maquette numérique du véhicule complet lors d'une simulation électromagnétique de l'antenne intégrée à bord de ce véhicule. De plus, dans cette section, nous avons étudié la limite de la validité de substitution d'une antenne intégrée à bord par son seul diagramme de rayonnement dans les modèles de canaux de propagation. A partir de cette étude, nous en avons déduit, que les interactions électromagnétiques avec les éléments se situant dans le champ-proche n'étaient plus valides. Ainsi, une stratégie de correction a été trouvée en considérant l'élément en champ proche dans la simulation initiale de l'antenne intégrée sur le véhicule. L'évaluation des performances d'antennes, en termes de taux d'erreurs paquet, après l'implémentation de la couche physique du standard 802. 11 p, est au cœur de la troisième partie de cette thèse. Des résultats de simulation, pour chaque configuration d'antenne, ont été donnés pour plusieurs combinaisons de paramètres de couche PHY tels que le débit et la longueur de paquet. La dernière partie de ce manuscrit traite de la présentation d'une campagne de mesure qui a été réalisée principalement dans un environnement de type rural. Les essais de roulage avaient pour but de démontrer la capacité des méthodes de simulation à faire un choix approprié d'installation d'antenne. Nous avons constaté que les tendances attendues des performances de communication en termes de PER sont globalement prévisibles à partir de notre modèle bien que nous ayons obtenu des résultats surprenants dans certains cas. Ce qui nécessitera une enquête plus approfondie. / The general framework of this Ph.D. thesis deals with Vehicle to Vehicle (V2V) communications. This communication is principally dedicated to reinforce security through exchange of information between vehicles in case of unexpected events. The development of V2V solutions requires the understanding and merging of a number of techniques from several communication technology areas. Indeed, the performance of these systems are related to three main blocks: the implementation of the modems, the antenna configuration and the fast varying electromagnetic environment surrounding the transmitter and the receiver. The purpose of this PhD thesis is precisely to elaborate a design strategy to investigate all the different blocks constituting the communication chain. The ultimate goal is to optimize antenna selection and location on board the vehicle. In the first place, we proposed a geometry-based stochastic channel modelling approach to develop virtual dynamic scenarios. It was shown that the most common propagation environments such as rural, highway or urban-like propagation channels are reached through adjustment or numbers and location of simple metallic plates. Using this method, we are able to emulate the characteristics, such as the delay spread, angles of arrival distribution and the Doppler spectrum, of these typical driving scenarios. Moreover, we dealt with antenna integration problems in the second part of this work. A study on the simplification of numerical models of vehicles was carried out. Furthermore in this section, we investigated the limit of validity of representing the integrated antenna on board vehicle solely by its radiation pattern. We deduced from this study that the interactions with the elements present in the near-field is no longer valid. Thus, a strategy to alleviate the degree of error was found upon consideration of the near-field scatter in the a-priori simulation of the antenna integrated on the vehicle. In the third part of this thesis, we evaluated the performance of different antenna configurations in terms of packet error rate after the embodiment of the PHY layer of the LEEE 802.11p standard. Simulation results, for each antenna configurations, was given for several combinations of PHY layer parameters such as data rate and packet length. The last part of this manuscript is dedicated to the presentation of a measurement campaign that was carried out in a rural driving environment. Results obtained from these functional tests were confronted with simulation results to demonstrate the strength of the latter. We found that the expected trends in communication performance in terms of PER are globally predictable from our model though we obtained surprising results in some cases, needing further investigation.
34

Extending the scaled boundary finite-element method to wave diffraction problems

Li, Boning January 2007 (has links)
[Truncated abstract] The study reported in this thesis extends the scaled boundary finite-element method to firstorder and second-order wave diffraction problems. The scaled boundary finite-element method is a newly developed semi-analytical technique to solve systems of partial differential equations. It works by employing a special local coordinate system, called scaled boundary coordinate system, to define the computational field, and then weakening the partial differential equation in the circumferential direction with the standard finite elements whilst keeping the equation strong in the radial direction, finally analytically solving the resulting system of equations, termed the scaled boundary finite-element equation. This unique feature of the scaled boundary finite-element method enables it to combine many of advantages of the finite-element method and the boundaryelement method with the features of its own. ... In this thesis, both first-order and second-order solutions of wave diffraction problems are presented in the context of scaled boundary finite-element analysis. In the first-order wave diffraction analysis, the boundary-value problems governed by the Laplace equation or by the Helmholtz equation are considered. The solution methods for bounded domains and unbounded domains are described in detail. The solution process is implemented and validated by practical numerical examples. The numerical examples examined include well benchmarked problems such as wave reflection and transmission by a single horizontal structure and by two structures with a small gap, wave radiation induced by oscillating bodies in heave, sway and roll motions, wave diffraction by vertical structures with circular, elliptical, rectangular cross sections and harbour oscillation problems. The numerical results are compared with the available analytical solutions, numerical solutions with other conventional numerical methods and experimental results to demonstrate the accuracy and efficiency of the scaled boundary finite-element method. The computed results show that the scaled boundary finite-element method is able to accurately model the singularity of velocity field near sharp corners and to satisfy the radiation condition with ease. It is worth nothing that the scaled boundary finite-element method is completely free of irregular frequency problem that the Green's function methods often suffer from. For the second-order wave diffraction problem, this thesis develops solution schemes for both monochromatic wave and bichromatic wave cases, based on the analytical expression of first-order solution in the radial direction. It is found that the scaled boundary finiteelement method can produce accurate results of second-order wave loads, due to its high accuracy in calculating the first-order velocity field.

Page generated in 0.1073 seconds