• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Weak Groethendieck Compactness Principle for Infinite Dimensional Banach Spaces

Bjorkman, Kaitlin 26 April 2013 (has links)
The goal of this thesis is to give an exposition of the following recent result of Freeman, Lennard, Odell, Turett and Randrianantoanina. A Banach space has the Schur property if and only if every weakly compact set is contained in the closed convex hull of a weakly null sequence. This result complements an old result of Grothendieck (now called the Grothendieck Compactness Principle) stating that every norm compact subset of a Banach space is contained in the closed convex hull of a norm null sequence. We include many of the relevant definitions and preliminary results which are required in the proofs of both of these theorems.
2

A Strictly Weakly Hypercyclic Operator with a Hypercyclic Subspace

Madarasz, Zeno 11 August 2023 (has links)
No description available.
3

Inverse Problems in Analytic Interpolation for Robust Control and Spectral Estimation

Karlsson, Johan January 2008 (has links)
This thesis is divided into two parts. The first part deals with theNevanlinna-Pick interpolation problem, a problem which occursnaturally in several applications such as robust control, signalprocessing and circuit theory. We consider the problem of shaping andapproximating solutions to the Nevanlinna-Pick problem in a systematicway. In the second part, we study distance measures between powerspectra for spectral estimation. We postulate a situation where wewant to quantify robustness based on a finite set of covariances, andthis leads naturally to considering the weak*-topology. Severalweak*-continuous metrics are proposed and studied in this context.In the first paper we consider the correspondence between weighted entropyfunctionals and minimizing interpolants in order to find appropriateinterpolants for, e.g., control synthesis. There are two basic issues that weaddress: we first characterize admissible shapes of minimizers bystudying the corresponding inverse problem, and then we developeffective ways of shaping minimizers via suitable choices of weights.These results are used in order to systematize feedback controlsynthesis to obtain frequency dependent robustness bounds with aconstraint on the controller degree.The second paper studies contractive interpolants obtained as minimizersof a weighted entropy functional and analyzes the role of weights andinterpolation conditions as design parameters for shaping theinterpolants. We first show that, if, for a sequence of interpolants,the values of the corresponding entropy gains converge to theoptimum, then the interpolants converge in H_2, but not necessarily inH-infinity. This result is then used to describe the asymptoticbehaviour of the interpolant as an interpolation point approaches theboundary of the domain of analyticity.A quite comprehensive theory of analytic interpolation with degreeconstraint, dealing with rational analytic interpolants with an apriori bound, has been developed in recent years. In the third paper,we consider the limit case when this bound is removed, and only stableinterpolants with a prescribed maximum degree are sought. This leadsto weighted H_2 minimization, where the interpolants areparameterized by the weights. The inverse problem of determining theweight given a desired interpolant profile is considered, and arational approximation procedure based on the theory is proposed. Thisprovides a tool for tuning the solution for attaining designspecifications. The purpose of the fourth paper is to study the topology and develop metricsthat allow for localization of power spectra, based on second-orderstatistics. We show that the appropriate topology is theweak*-topology and give several examples on how to construct suchmetrics. This allows us to quantify uncertainty of spectra in anatural way and to calculate a priori bounds on spectral uncertainty,based on second-order statistics. Finally, we study identification ofspectral densities and relate this to the trade-off between resolutionand variance of spectral estimates.In the fifth paper, we present an axiomatic framework for seekingdistances between power spectra. The axioms requirethat the sought metric respects the effects of additive andmultiplicative noise in reducing our ability to discriminate spectra.They also require continuity of statistical quantities withrespect to perturbations measured in the metric. We then present aparticular metric which abides by these requirements. The metric isbased on the Monge-Kantorovich transportation problem and iscontrasted to an earlier Riemannian metric based on theminimum-variance prediction geometry of the underlying time-series. Itis also being compared with the more traditional Itakura-Saitodistance measure, as well as the aforementioned prediction metric, ontwo representative examples. / QC 20100817
4

Slabé a slabé* homeomorfismy / Weak and weak* homeomorphisms

Švarc, Radovan January 2020 (has links)
In this thesis we are studying some properties of weakly sequential homeomorphisms between Banach spaces. First, we show some results that summarize how are some clas- ses of Banach spaces (specifically separable spaces, spaces with separable dual, Asplund spaces, reflexive spaces, weakly compactly generated spaces and spaces not containing isomorphic copy of ℓ1) determined by weak topology of the space. Then we show that to preserve some properties (separability, reflexivity and being weakly compactly gene- rated) it is enough for the spaces to be weakly sequentially homeomorphic. Furthermore we show that if two spaces are weakly sequentially uniformly homeomorphic then one contains isomorphic copy of ℓ1 if and only if the other spaces has this property. Finally we construct weakly sequential homeomorphisms between some class of Banach spaces.

Page generated in 0.0644 seconds