Spelling suggestions: "subject:"beaning stress"" "subject:"cleaning stress""
1 |
The effects of weaning stress on the serum protein profile of calves : a proteomic analysisHerzog, Katie R 08 June 2007
Studies in animals and humans link both physical and psychological stress with an increased rate and severity of infections and onset of diseases. Stress is a very broad and complex topic. It can be defined as a condition occurring in response to adverse external influences capable of affecting physical health which leads to activation of a stress response in the body. There are two prominent stress responsive systems: the hypothalamic-pituitary-adrenal axis and the sympathetic adrenomedullary axis. These systems are responsible for the majority of the changes in the body, which occur in response to stress. Stress has been linked to many detrimental effects in cattle including immune suppression, increased disease susceptibility and decreased reproduction. These cause huge economic losses to the cattle industry every year. Weaning has been identified as one of the main stressors implicated in these negative effects. For this reason it is important to be able to identify animals stressed by weaning and do so using samples which are easily obtainable and useful for future diagnostic purposes. We hypothesize that weaning will cause sufficient stress in cattle to alter protein profiles in serum, which can be used to identify this type of stress. To do this we employed proteomic methodologies including two-dimensional gel electrophoresis and mass spectrometry to compare an abrupt weaned group of calves to a never weaned group and a previously weaned group (preconditioned). We have included a preconditioned group to examine the differences between this group and animals which have never been weaned. Preconditioned animals are typically used as a control group in weaning studies. A total of 83 distinct protein bands were identified after image analysis. Out of 83 protein bands, we found 9 spots which were significantly different in abundance among the treatment groups. Two out of 9 spots were significantly different between the abrupt weaned and the never weaned groups. Five protein bands were also found to be significantly different between the abrupt weaned group and the preconditioned group. Five protein bands were found to be significantly different between the never weaned group and the preconditioned group. Identification of these proteins, however, had limited success since the bovine protein database is not as extensive as that for humans or mice. Among the proteins identified were alpha-1-acid glycoprotein and collagen precursor. The differences in intensities found between the abrupt weaned group and the never weaned group may be useful as markers of calves going through weaning stress. We have also seen that animals who have undergone weaning and through the stress associated with that event are not exactly the same as animals which have never been weaned. This has implications to research where a preconditioned group is used as a control rather than a never weaned group. Despite the limitations of the methodology used for the current system, the overall results revealed specific changes in serum proteins which were associated with abrupt weaned animals. Future studies can be planned to determine the specificity of these protein changes and possibly identify the molecular basis of stress dependent disease susceptibility.
|
2 |
The effects of weaning stress on the serum protein profile of calves : a proteomic analysisHerzog, Katie R 08 June 2007 (has links)
Studies in animals and humans link both physical and psychological stress with an increased rate and severity of infections and onset of diseases. Stress is a very broad and complex topic. It can be defined as a condition occurring in response to adverse external influences capable of affecting physical health which leads to activation of a stress response in the body. There are two prominent stress responsive systems: the hypothalamic-pituitary-adrenal axis and the sympathetic adrenomedullary axis. These systems are responsible for the majority of the changes in the body, which occur in response to stress. Stress has been linked to many detrimental effects in cattle including immune suppression, increased disease susceptibility and decreased reproduction. These cause huge economic losses to the cattle industry every year. Weaning has been identified as one of the main stressors implicated in these negative effects. For this reason it is important to be able to identify animals stressed by weaning and do so using samples which are easily obtainable and useful for future diagnostic purposes. We hypothesize that weaning will cause sufficient stress in cattle to alter protein profiles in serum, which can be used to identify this type of stress. To do this we employed proteomic methodologies including two-dimensional gel electrophoresis and mass spectrometry to compare an abrupt weaned group of calves to a never weaned group and a previously weaned group (preconditioned). We have included a preconditioned group to examine the differences between this group and animals which have never been weaned. Preconditioned animals are typically used as a control group in weaning studies. A total of 83 distinct protein bands were identified after image analysis. Out of 83 protein bands, we found 9 spots which were significantly different in abundance among the treatment groups. Two out of 9 spots were significantly different between the abrupt weaned and the never weaned groups. Five protein bands were also found to be significantly different between the abrupt weaned group and the preconditioned group. Five protein bands were found to be significantly different between the never weaned group and the preconditioned group. Identification of these proteins, however, had limited success since the bovine protein database is not as extensive as that for humans or mice. Among the proteins identified were alpha-1-acid glycoprotein and collagen precursor. The differences in intensities found between the abrupt weaned group and the never weaned group may be useful as markers of calves going through weaning stress. We have also seen that animals who have undergone weaning and through the stress associated with that event are not exactly the same as animals which have never been weaned. This has implications to research where a preconditioned group is used as a control rather than a never weaned group. Despite the limitations of the methodology used for the current system, the overall results revealed specific changes in serum proteins which were associated with abrupt weaned animals. Future studies can be planned to determine the specificity of these protein changes and possibly identify the molecular basis of stress dependent disease susceptibility.
|
3 |
Behaviour of foster cows and calves in dairy production : acceptance of calves, cow-calf interactions and weaning /Loberg, Jenny M., January 2007 (has links) (PDF)
Diss. (sammanfattning) Uppsala : Sveriges lantbruksuniv., 2007. / Härtill 4 uppsatser.
|
4 |
EFFECTS OF DIETARY ENZYMATICALLY TREATED YEAST IN WEANLING PIGS AND COCCIDIA-CHALLENGED BROILER CHICKENSEmmanuel Oluwabukunmi Alagbe (13150794) 27 July 2022 (has links)
<p>The objective of this thesis was to investigate the effect of dietary enzymatically treated yeast (ETY) in weanling pigs and evaluate the effect of ETY in broiler chickens during a coccidia challenge. Two studies were carried out to investigate this objective.</p>
<p>The first experiment examined the effect of ETY on the growth performance, nutrient digestibility, immune response, and gut health of weanling pigs. A total of 192 weanling pigs (6.0 ± 1.04 kg) were allocated to 4 corn, soybean-based diets with increasing concentrations of ETY (0, 1, 2, or 4 g/kg) for a 43-d trial. There were 8 replicate pens (4 replicate pens per sex) and 6 pigs per replicate for each dietary treatment. The experiment was set up as a randomized complete block design. Dietary ETY supplementation did not affect the growth performance of weanling pigs. The ATTD of neutral detergent fiber (NDF) linearly increased (P < 0.05) at d 28. The concentrations of serum antioxidant and antibody markers increased (P < 0.05) from d 14 to d 43; a linear increase (P < 0.05) in catalase was observed on d 14 with increasing ETY supplementation in the diets. The inclusion of ETY in the diet did not affect the mRNA abundance of anti-inflammatory markers in the ileal mucosa of pigs but increased (P < 0.01) glutathione peroxidase 4. Ileal villus height (VH) and villus height to crypt depth (VH:CD) ratio were greater (P < 0.05) in pigs fed ETY supplemented diets relative to control pigs. However, jejunal VH and the VH:CD ratio was not affected by ETY inclusion in the diet. Pigs fed diets with increasing ETY levels had higher (P < 0.05) ileal digesta butyrate concentration relative to control pigs, but not propionate or acetate. </p>
<p>The second experiment examined the effect of ETY on the growth performance, nutrient digestibility, and intestinal health of broiler chickens during a coccidia challenge. From d 1 to 14 post hatching, 480 broiler chickens (49.9 ± 3.95 g) were allocated to 3 corn-soybean meal-based diets with increasing concentrations of ETY (0, 1, or 2 g/kg). There were 16 replicate cages and 10 birds per cage. The experiment was designed as a randomized complete block design with body weight (BW) used as a blocking factor. On d 14 post hatching, the birds were combined and re-randomized within each of the 0, 1, or 2 ETY g/kg experimental diets. Following this, the number of birds was reduced to 8 birds per cage with 8 replicate cages. Each of the 3 diet groups was split into a challenge or no-challenge group. This resulted in a 3 × 2 factorial arrangement of treatments with 3 experimental diets and 2 challenge states. The BW ratio before re-randomization was maintained across all treatments during the reallotment. On d 15 post hatching, the birds in the challenge group were orally gavaged with 1 mL solution containing 25,000, 25,000, and 125,000 oocysts of E. maxima, E. tenella, and E. acervulina, respectively. The birds belonging to the no-challenge group were orally gavaged with 1 mL phosphate buffered saline. Data were analyzed using the MIXED procedure of SAS, and polynomial contrasts were used to estimate the linear and quadratic effects of ETY. The coccidia challenge (CC) decreased (P < 0.01) the BW gain, feed intake, and G:F of broiler chickens from d 14 to 21. Increasing supplementation of dietary ETY improved (P < 0.05) the G:F of birds. Also, the CC reduced (P < 0.01) the apparent total tract utilization of dry matter (DM), nitrogen (N) and gross energy (GE). The CC reduced (P < 0.01) the apparent metabolizable energy (AME) and the nitrogen corrected apparent metabolizable energy (AMEn) of diets fed to broiler chickens. On d 21, dietary ETY linearly increased (P < 0.01) the apparent ileal digestibility of DM, N, and GE in broiler chickens. The CC increased (P < 0.01) the mRNA gene expression of TNFα, IL-1β, IL-10, and IL-6. There was a tendency (P < 0.1) for ETY to reduce IL-1β expression in broiler chickens on d 21. Additionally, ETY supplementation increased (P < 0.05) the gene expression of occludin in the ceca of broiler chickens but not claudin 1. Serum catalase increased (P < 0.05) with increasing supplementation of dietary ETY in broiler chickens on d 21. Dietary ETY linearly increased (P < 0.05) the ileal villus height to crypt depth ratio and ileal goblet cell count and density in broiler chickens. The ileal and excreta oocyst counts decreased (P < 0.01) with increasing supplementation of dietary ETY in coccidia-challenged broiler chickens on d 21. </p>
<p>In summary, ETY inclusion in diets of weanling pigs partially reduced reactive oxygen species damage and enhanced intestinal health without negatively affecting growth performance. Hence, ETY could be favorable in attenuating some of the deleterious effects of post-weaning stress in weanling pigs. Dietary ETY also reduced oxidative damage, improved growth performance, enhanced nutrient utilization, and augmented intestinal development in broiler chickens. However, the inclusion of ETY did not mitigate the adverse effects of a coccidia challenge in broiler chickens. Therefore, further studies may be necessary to investigate the prospect of ETY as a dietary strategy for combating coccidiosis.</p>
<p><br></p>
|
Page generated in 0.0769 seconds