• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mechanical weathering in cold regions with special emphasis on the Antarctic environment and the freeze-thaw mechanism in particular.

Hall, Kevin John. January 2003 (has links)
Consideration of almost any geomorphology textbook will show the fundamental argument that in cold environments mechanical weathering processes, usually freeze-thaw, will predominate and that chemical weathering will be temperature-limited, often to the point of non occurrence. These basic concepts have underpinned geomorphology for over a century and are the basis for the development of many landforms in periglacial regions. With the introduction of data loggers so field data became more readily available but, sadly, those data were not of a quality to other than justify the existent assumptions and thus did little more than reinforce, rather than test, the nature of our understanding of cold region weathering. Factors such as rock properties were dealt with to a limited extent but rock moisture was all but ignored, despite its centrality to most weathering processes. Here the results of field studies into weathering in cold regions, coupled with laboratory experiments based on the field data, are presented. An attempt is made to overcome the shortcomings of earlier studies. Temperature, moisture and rock properties have all been considered. Processes were not assumed but rather the data were used to evaluate what processes were operative. The results, both in terms of weathering process understanding per se and of its application to landform development, significantly challenge our longheld perceptions. Information is presented that shows that it is not temperature, but rather water, that is the limiting factor in cold region weathering. Indeed, in the absence of water, many cold environments have attributes akin to a hot desert. The relevance of this is that weathering processes other than freeze-thaw may play a significant role and that in the presence of water chemical weathering can play a far greater role than hitherto thought. Overall, the whole concept of zonality with respect to weathering is questioned. Finally, the attributes of weathering are put within the context of landform development and questions raised regarding the origin of some forms and of their palaeoenvironmental significance. Attributes of periglacial, glacial and zoogeomorphic processes and landforms in present and past cold environments are also presented. / Thesis (Ph.D.)-University of Natal, Pietermaritzburg, 2003.
2

The characterisation of an openwork block deposit, northern buttress, Vesleskarvet, Dronning Maud Land, Antarctica.

Hansen, Christel Dorothee January 2014 (has links)
Investigating openwork block accumulation has the potential to further our understanding of rock weathering, the control of geological structure on landforms, the production of substrates for biological colonisation and the impacts of climate change on landform development and dynamics. Various models for the development of these landforms have been proposed. This includes in situ weathering, frost heave and wedging. Furthermore, it has been suggested that cold-based ice has the potential to preserve these features rather than to obliterate them. Blocky deposits are also frequently used as proxy evidence for interpreting palaeoclimates. The morphology and processes acting on a blockfield located on the Northern Buttress of the Vesleskarvet Nunataks, Dronning Maud Land, Antarctica (2°W, 71°S) were investigated and characterised. Given block dimensions and orientations that closely resembled the parent material and only small differences in aspect related characteristics observed, the blockfield was found to be autochthonous with in situ block production and of a young (Holocene) age. Small differences in rock hardness measurements suggest some form of aspect control on rock weathering. South-facing sides of clasts were found to be the least weathered. In comparison, consistently low rock hardness rebound values for the north-facing aspects suggest that these are the most weathered sides. Additional indicators of weathering, such as flaking and pitting, support analyses conducted for rock hardness rebound values. Solar radiation received, slope gradients and snow cover were found to influence weathering of clasts across the study site. Furthermore, ambient temperatures and wind speed significantly influenced near-surface ground temperatures dynamics. However, the lack of a matrix and paucity of fine material in textural analyses suggest a limited weathering environment. It is suggested that the retreat of the Antarctic ice sheet during the last LGM led to unloading of the surface, causing dilatation and subsequent fracturing of the bedrock along pre-existing joints, leading to in situ clast supply. Subsequent weathering and erosion along other points or lines of weakness then yielded fines and slight edge rounding of clasts.

Page generated in 0.0855 seconds