• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Interaction of charged particle beams with plasmas

Siemon, Carl Joseph 16 February 2015 (has links)
This thesis focuses on the propagation of charged particle beams in plasmas, and is divided into two main parts. In the second chapter, a novel theoretical model for underdense electron beam propagation during the nonlinear stage of the resistive Weibel instability (WI) is presented and is used to calculate the stopping time of the beam. The model and supporting simulation results lead to the conclusion that the WI initially enhances beam deceleration but then reduces it when compared to a filamentation-suppressed beam (without WI), so that the overall stopping time of the beam is essentially unaffected by the instability. Using the theoretical model, a criterion is derived that determines when deceleration is no longer enhanced by the instability. We also demonstrate that exotic plasma return current distributions can be obtained within and outside of beam filaments that sharply contrast those observed in collisionless systems. For example, the plasma return current is reversed in selected areas. In the next chapter, a new method for initiating the modulation instability (MI) of a proton beam in a proton driver plasma wakefield accelerator using a short laser pulse preceding the beam is presented. A diffracting laser pulse is used to produce a plasma wave that provides a seeding modulation of the proton bunch with the period equal to that of the plasma wave. Using the envelope description of the proton beam, this method of seeding the MI is analytically compared with the earlier suggested seeding technique that involves an abrupt truncation of the proton bunch. The full kinetic simulation of a realistic proton bunch is used to validate the analytic results. It is further used to demonstrate that a plasma density ramp placed in the early stages of the laser-seeded MI leads to its stabilization, resulting in sustained accelerating electric fields (of order several hundred MV/m) over long propagation distances (100-1000 m). The final chapter describes a harmonic expansion formalism that attempts to explain the post-linear stage of the MI. The formalism is developed first, and then several crippling problems with it are identified. / text
2

Kinetic instabilities in plasmas : from electromagnetic fluctuations to collisionless shocks / Instabilités cinétiques dans les plasmas : des fluctuations électromagnétiques aux chocs non-collisionnels

Ruyer, Charles 11 December 2014 (has links)
Les chocs non-collisionnels jouent un rôle majeur dans de nombreux événements astrophysiques à haute densité d'énergie (sursauts gamma, restes de supernovæ, vents de pulsar...), et seraient responsables de la génération de particules supra-thermiques et de radiations. Les simulations ont démontré qu'en l’absence de champs magnétiques externes, des instabilités électromagnétiques peuvent prendre place lors de la collision de plasmas à haute vitesse. Les instabilités du type Weibel sont en effet capables de faire croître, dans ces milieux, une turbulence électromagnétique potentiellement en mesure de défléchir et d'accélérer des particules par des processus du type Fermi. En plus d'une compréhension théorique toujours croissante, la génération expérimentale de tels chocs est maintenant étudiée à l'aide de lasers de puissance. Les fluctuations thermiques électromagnétiques constituent les germes des instabilités se développant dans un plasma. Nous nous sommes attelés à leur description dans le cas d’un plasma relativiste régi par une fonction de distribution de type Maxwell-Jüttner. Des formules exactes de la densité spectrale ont pu être obtenues pour différentes orientations du vecteur propre. Ces résultats ont pu être confrontés aux prédictions d’un code de simulation particle-in-cell (PIC). Un très bon accord a été démontré.Ces résultats ont été exploités lors d'une collaboration internationale dont le but était d'estimer le temps de saturation de l'instabilité cinétique de Weibel, générant des fluctuations magnétiques. Les estimations obtenues ont pu être validées par des simulations PIC sur trois ordres de grandeur d'énergie de dérive.Nous avons ensuite mené une étude théorique et numérique des collisions de plasma d'électrons-ions en régime non-collisionnel ayant lieu lors d'événements astrophysiques tels que les restes de supernovæ. Par-delà un intérêt académique pour la compréhension des processus de transfert/transport d’énergie au sein des plasmas, la récente génération de tels plasmas en laboratoire ouvre des perspectives inédites en astrophysique des hautes énergies. La zone de recouvrement de ces faisceaux de particules est sujette à des instabilités cinétiques du type Weibel, générant des champs magnétiques intenses.Nous avons modélisé l'évolution non-linéaire d'un système soumis à l'instabilité de Weibel, et obtenu des formules analytiques de l'évolution des paramètres plasmas (températures et vitesse de dérive) et des champs magnétiques. Le modèle prédit ainsi l’évolution du système jusqu’à un stade proche de l’isotropisation complète des populations de particules et donc jusqu'à la formation d’un choc non-collisionnel. Ce modèle, en accord avec des simulations du type « particle-in-cell », pu aussi être comparé à des résultats expérimentaux récents. L'étude de la propagation des chocs non-collisionnels, m'a permis de généraliser le précédent modèle au cas de la turbulence magnétique ayant lieu en amont du front de choc.Nous nous sommes consacrés enfin aux chocs non-collisionnels créés dans un plasma dense (opaque) irradié par un laser intense. L’interaction laser-plasma qui en résulte donne lieu à un important courant d'électrons relativistes qui sont à l’origine d’instabilités cinétiques (de filamentation notamment) susceptibles d'évoluer en choc non-collisionnel. Une observation originale, contrastant avec les premières publications sur le sujet est que pour les paramètres considérés (un laser d’éclairement ~1021 Wcm-2, interagissant avec une cible solide), le choc résulte de la turbulence magnétique produite par l’instabilité électronique, plutôt que par l’instabilité ionique (dont la croissance est plus tardive). En d’autres termes, compte tenu de l’énergie très élevée des électrons accélérés par le laser, la turbulence qu'ils génèrent s’avère assez forte pour rapidement défléchir les ions. / Collisionless shocks play a major role in powerful astrophysical objects (e.g., gamma-ray bursts, supernova remnants, pulsar winds, etc.), where they are thought to be responsible for non-thermal particle acceleration and radiation. Numerical simulations have shown that, in the absence of an external magnetic field, these self-organizing structures originate from electromagnetic instabilities triggered by high-velocity colliding flows. These Weibel-like instabilities are indeed capable of producing the magnetic turbulence required for both efficient scattering and Fermi-type acceleration. Along with rapid advances in their theoretical understanding, intense effort is now underway to generate collisionless shocks in the laboratory using energetic lasers. In a first part we study the (w,k)-resolved electromagnetic thermal spectrum sustained by a drifting relativistic plasma. In particular, we obtain analytical formulae for the fluctuation spectra, the latter serving as seeds for growing magnetic modes in counterstreaming plasmas. Distinguishing between subluminal and supraluminal thermal fluctuations, we derived analytical formulae of their respective spectral contributions. Comparisons with particle-in-cell (PIC) simulations are made, showing close agreement in the subluminal regime along with some discrepancy in the supraluminal regime. Our formulae are then used to estimate the saturation time of the Weibel instability of relativistic pair plasmas. Our predictions are shown to match 2-D particle-in-cell (PIC) simulations over a three-decade range in flow energyWe then develop a predictive kinetic model of the nonlinear phase of the Weibel instability induced by two counter-streaming, symmetric and non-relativistic ion beams. This self consistent, fully analytical model allows us to follow the evolution of the beams' properties up to a stage close to complete isotropization and thus to shock formation. Its predictions are supported by 2D and 3D particle-in-cell (PIC) simulations of the ion Weibel instability in uniform geometries, as well as shock-relevant non-uniform configurations. Moreover, they are found in correct agreement with a recent laser-driven plasma collision experiment. Along with this comparison, we pinpoint the important role of electron screening on the ion-Weibel dynamics, which may affect the results of simulations with artificially high electron mass. We subsequently address the shock propagation resulting from the magnetic Weibel turbulence generated in the upstream region. Generalizing the previous symmetric-beam model to the upstream region of the shock, the role of the magnetic turbulence in the shock-front has been analytically and self-consistently characterized. Comparison with simulations validates the model. The interaction of high-energy, ultra-high intensity lasers with dense plasmas is known to produce copious amounts of suprathermal particles. Their acceleration and subsequent transport trigger a variety of Weibel-like electromagnetic instabilities, acting as additional sources of slowing down and scattering. Their understanding is important for the many applications based upon the energy deposition and/or field generation of laser-driven particles. We investigate the ability of relativistic-intensity laser pulses to induce Weibel instability-mediated shocks in overdense plasma targets, as first proposed by Fiuza in 2012. By means of both linear theory and 2D PIC simulations, we demonstrated that in contrast to the standard astrophysical scenario previously addressed, the early-time magnetic fluctuations (Weibel instability) generated by the suprathermal electrons (and not ions) are strong enough to isotropize the target ions and, therefore, induce a collisionless electromagnetic shock.
3

Modèle Vlasov-Maxwell pour l'étude des instabilités de type Weibel / Vlasov Maxwell model for the study of Weibel type instabilities

Inglebert, Aurélie 19 November 2012 (has links)
L'origine de champs magnétiques observés dans les plasmas de laboratoire et d'astrophysique est l'un des problèmes récurrents en physique des plasmas. À cet égard, les instabilités de type Weibel sont considérées d'une grande importance. Ces instabilités ont pour origine une anisotropie de température (instabilité de Weibel) et des moments des électrons (instabilité de filamentation de courant). L'objectif principal de cette thèse est l'étude théorique et numérique de ces instabilités dans un plasma non collisionnel en régime relativiste. Le premier aspect de ce travail est l'étude du régime non-linéaire de ces instabilités et du rôle des effets cinétiques et relativistes sur la structure des champs électromagnétiques auto-cohérents. Dans ce cadre, un problème essentiel pour les applications et la théorie, concerne l'identification et l'analyse des structures cohérentes développées spontanément dans le régime non-linéaire sur des échelles cinétiques. Un deuxième aspect du travail est le développement de techniques analytiques et numériques pour l'étude des plasmas non collisionnels. Le modèle mathématique de référence, à la base des études des plasmas chauds, est le modèle Vlasov-Maxwell, où l'équation de Vlasov (théorie des champs moyens) est couplée aux équations de Maxwell de façon auto-cohérente. Un modèle unidimensionnel, le modèle multi-faisceaux, a également été introduit durant cette thèse. Basé sur une technique de réduction en dimension, il est à la fois un modèle analytique "simple" présentant l'avantage de pouvoir résoudre une équation de Vlasov 1D pour chaque faisceau de particules, et un modèle numérique moins coûteux qu'un modèle complet / The origin of magnetic fields observed in laboratory and astrophysical plasmas is one ofthe most challenging problems in plasma physics. In this respect, the Weibel type instabilities are considered of key importance. These instabilities are caused by a temperature anisotropy (Weibel instability) and electron momentum (current filamentation instability). The main objective of this thesis is the theoretical and numerical study of these instabilities in a collisionless plasma in the relativistic regime. The first aspect of this work is to study the nonlinear regime of these instabilities and the role of kinetic and relativistic effects on the structure of self-consistent electromagnetic fields. In this context, a key problem for the theory and applications, is the identification and analysis of coherent structures developed spontaneously in the nonlinear regime of kinetic scales. A second aspect of the work is the development of analytical and numerical techniques for the study of collisionless plasmas. A mathematical model of reference is the Vlasov-Maxwell model, where the Vlasov equation (mean field theory) is coupled to the Maxwell equations in a self-consistent way. A one-dimensional model, the multi-stream model, is also introduced. Based on a dimensional reduction technique, it is both an analytical model "simple" having the advantage of being able to solve a 1D Vlasov equation for each particle beam, and a numerical model less expensive than a complete model

Page generated in 0.0736 seconds