• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 68
  • 9
  • 7
  • 3
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 139
  • 139
  • 139
  • 23
  • 20
  • 20
  • 17
  • 17
  • 17
  • 15
  • 15
  • 14
  • 14
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Characterisation and recombinant expression of antigens for the rapid diagnosis of West Nile virus infection

Jody Hobson-Peters Unknown Date (has links)
West Nile Virus (WNV) is a mosquito-borne pathogen of global significance. It is active on several continents and is responsible for recent outbreaks of fever and fatal encephalitis in humans and horses. While highly virulent strains have been reported in Europe, North, Central and South America, only a benign subtype of WNV (Kunjin virus – KUNV) occurs in Australia. However, virulent, exotic WNV strains are seen as a significant threat to Australia due to the ease with which this virus can move between continents and the presence of suitable vectors and hosts already within Australia. KUNV and WNV subtypes are antigenically and genetically very closely related and cross-react in traditional serological tests. This cross-reactivity makes it very difficult to differentiate between KUNV and WNV infections using standard serological tests. The aim of this thesis was to identify immunogenic epitopes unique to KUNV or WNV and to use these epitopes in the development of a rapid assay that would enable the diagnosis of and surveillance for exotic virulent strains of WNV in Australia. The rapid diagnostic platform chosen was a red blood cell (RBC) agglutination assay that was originally patented and commercialised by AGEN Biomedical Ltd. The RBC agglutination assay reagent consists of the Fab region of a human erythrocyte-specific monoclonal antibody (mAb) conjugated to the epitope of interest (in this instance, a WNV-specific peptide). This bi-functional reagent causes the agglutination of the patient’s erythrocytes in the presence of WNV-specific antibody in the patient’s serum. Traditionally, these RBC agglutination reagents have been produced by chemical conjugation. However, a potentially easier and cheaper method involves the linking of the gene encoding the erythrocyte-specific antibody to that encoding the epitope to create a recombinant version of the bi-functional agglutination reagent through expression using prokaryotic or eukaryotic systems. To identify potential differential epitopes, 18 mAbs to WNV (NY99 strain) prM and envelope (E) proteins were assessed. One mAb (17D7) differentially recognised WNV and KUNV in ELISA and maintained recognition of its corresponding epitope upon reduction and carboxymethylation of the viral antigen, suggesting a continuous (linear) epitope. Using synthetic peptides, the epitope was mapped to a 19 amino acid sequence (WN19: E147-165) encompassing the WNV NY99 E protein glycosylation site at position 154. An amino acid substitution at position E156 of many KUNV strains abolishes this glycosylation moiety. The inability of WNV-positive horse and mouse sera to bind the synthetic peptides indicated that glycosylation was required for recognition of peptide WN19 by WNV-specific antibodies in sera. N-linked glycosylation of WN19 was achieved through expression of the peptide as a C-terminal fusion protein in mammalian cells and specific reactivity of WNV-positive horse sera to the glycosylated WN19 fusion protein was shown by Western blot. Additional sera collected from horses that had been infected with Murray Valley encephalitis virus (MVEV), which is similarly glycosylated at position E154 and exhibits high sequence identity to WNV NY99 in this region, also recognised the recombinant peptide. In contrast, no reactivity with the recombinant peptide was observed by sera from horses infected with the unglycosylated WNV subtype, KUNV. Failure of most WNV- and MVEV-positive horse sera to recognise the epitope as a deglycosylated fusion protein (75% and 100% respectively) confirmed that the N-linked glycan is important for antibody recognition of the peptide. Together, these results suggest that the induction of antibodies to the WN19 epitope during WNV infection of horses is generally associated with E protein glycosylation of the infecting viral strain. To assess the feasibility of using peptide WN19 in a rapid immunoassay, the peptide was recombinantly fused to a RBC (glycophorin)-specific single chain antibody (scFv) using previously published constructs which were developed for the bacterial expression of similar bi-functional reagents. To facilitate glycosylation of peptide WN19, the genes for the bi-functional agglutination reagents were subsequently cloned into eukaryotic expression vectors. An additional set of constructs were also produced in which the genes for the variable regions of the anti-RBC antibody were cloned into a vector for the secreted expression of an intact, humanised IgG1 molecule. Stable cell lines were produced for each of these constructs and secreted up to 700 ng/mL glycophorin-reactive antibody. The secreted recombinant protein could be harvested directly from the cell culture medium and used in RBC agglutination assays, where these bi-functional agglutination reagents could be cross-linked either with mAb 17D7 or by anti-peptide WN19 antibodies present in WNV-positive horse serum. The WNV NY99 prM protein was also identified as a useful marker of WNV-infection in horses, as well as a putative antigen to differentiate equine WNV NY99 and KUNV infections using Western blot. Two anti-WNV prM mAbs were also generated in this study and will be extremely valuable in future studies. Preliminary analysis of the prM epitope(s) bound by these mAbs and WNV-immune sera indicate that the binding site(s) is likely to be localised to pr and is conformational.
112

Characterisation and recombinant expression of antigens for the rapid diagnosis of West Nile virus infection

Jody Hobson-Peters Unknown Date (has links)
West Nile Virus (WNV) is a mosquito-borne pathogen of global significance. It is active on several continents and is responsible for recent outbreaks of fever and fatal encephalitis in humans and horses. While highly virulent strains have been reported in Europe, North, Central and South America, only a benign subtype of WNV (Kunjin virus – KUNV) occurs in Australia. However, virulent, exotic WNV strains are seen as a significant threat to Australia due to the ease with which this virus can move between continents and the presence of suitable vectors and hosts already within Australia. KUNV and WNV subtypes are antigenically and genetically very closely related and cross-react in traditional serological tests. This cross-reactivity makes it very difficult to differentiate between KUNV and WNV infections using standard serological tests. The aim of this thesis was to identify immunogenic epitopes unique to KUNV or WNV and to use these epitopes in the development of a rapid assay that would enable the diagnosis of and surveillance for exotic virulent strains of WNV in Australia. The rapid diagnostic platform chosen was a red blood cell (RBC) agglutination assay that was originally patented and commercialised by AGEN Biomedical Ltd. The RBC agglutination assay reagent consists of the Fab region of a human erythrocyte-specific monoclonal antibody (mAb) conjugated to the epitope of interest (in this instance, a WNV-specific peptide). This bi-functional reagent causes the agglutination of the patient’s erythrocytes in the presence of WNV-specific antibody in the patient’s serum. Traditionally, these RBC agglutination reagents have been produced by chemical conjugation. However, a potentially easier and cheaper method involves the linking of the gene encoding the erythrocyte-specific antibody to that encoding the epitope to create a recombinant version of the bi-functional agglutination reagent through expression using prokaryotic or eukaryotic systems. To identify potential differential epitopes, 18 mAbs to WNV (NY99 strain) prM and envelope (E) proteins were assessed. One mAb (17D7) differentially recognised WNV and KUNV in ELISA and maintained recognition of its corresponding epitope upon reduction and carboxymethylation of the viral antigen, suggesting a continuous (linear) epitope. Using synthetic peptides, the epitope was mapped to a 19 amino acid sequence (WN19: E147-165) encompassing the WNV NY99 E protein glycosylation site at position 154. An amino acid substitution at position E156 of many KUNV strains abolishes this glycosylation moiety. The inability of WNV-positive horse and mouse sera to bind the synthetic peptides indicated that glycosylation was required for recognition of peptide WN19 by WNV-specific antibodies in sera. N-linked glycosylation of WN19 was achieved through expression of the peptide as a C-terminal fusion protein in mammalian cells and specific reactivity of WNV-positive horse sera to the glycosylated WN19 fusion protein was shown by Western blot. Additional sera collected from horses that had been infected with Murray Valley encephalitis virus (MVEV), which is similarly glycosylated at position E154 and exhibits high sequence identity to WNV NY99 in this region, also recognised the recombinant peptide. In contrast, no reactivity with the recombinant peptide was observed by sera from horses infected with the unglycosylated WNV subtype, KUNV. Failure of most WNV- and MVEV-positive horse sera to recognise the epitope as a deglycosylated fusion protein (75% and 100% respectively) confirmed that the N-linked glycan is important for antibody recognition of the peptide. Together, these results suggest that the induction of antibodies to the WN19 epitope during WNV infection of horses is generally associated with E protein glycosylation of the infecting viral strain. To assess the feasibility of using peptide WN19 in a rapid immunoassay, the peptide was recombinantly fused to a RBC (glycophorin)-specific single chain antibody (scFv) using previously published constructs which were developed for the bacterial expression of similar bi-functional reagents. To facilitate glycosylation of peptide WN19, the genes for the bi-functional agglutination reagents were subsequently cloned into eukaryotic expression vectors. An additional set of constructs were also produced in which the genes for the variable regions of the anti-RBC antibody were cloned into a vector for the secreted expression of an intact, humanised IgG1 molecule. Stable cell lines were produced for each of these constructs and secreted up to 700 ng/mL glycophorin-reactive antibody. The secreted recombinant protein could be harvested directly from the cell culture medium and used in RBC agglutination assays, where these bi-functional agglutination reagents could be cross-linked either with mAb 17D7 or by anti-peptide WN19 antibodies present in WNV-positive horse serum. The WNV NY99 prM protein was also identified as a useful marker of WNV-infection in horses, as well as a putative antigen to differentiate equine WNV NY99 and KUNV infections using Western blot. Two anti-WNV prM mAbs were also generated in this study and will be extremely valuable in future studies. Preliminary analysis of the prM epitope(s) bound by these mAbs and WNV-immune sera indicate that the binding site(s) is likely to be localised to pr and is conformational.
113

Characterisation and recombinant expression of antigens for the rapid diagnosis of West Nile virus infection

Jody Hobson-Peters Unknown Date (has links)
West Nile Virus (WNV) is a mosquito-borne pathogen of global significance. It is active on several continents and is responsible for recent outbreaks of fever and fatal encephalitis in humans and horses. While highly virulent strains have been reported in Europe, North, Central and South America, only a benign subtype of WNV (Kunjin virus – KUNV) occurs in Australia. However, virulent, exotic WNV strains are seen as a significant threat to Australia due to the ease with which this virus can move between continents and the presence of suitable vectors and hosts already within Australia. KUNV and WNV subtypes are antigenically and genetically very closely related and cross-react in traditional serological tests. This cross-reactivity makes it very difficult to differentiate between KUNV and WNV infections using standard serological tests. The aim of this thesis was to identify immunogenic epitopes unique to KUNV or WNV and to use these epitopes in the development of a rapid assay that would enable the diagnosis of and surveillance for exotic virulent strains of WNV in Australia. The rapid diagnostic platform chosen was a red blood cell (RBC) agglutination assay that was originally patented and commercialised by AGEN Biomedical Ltd. The RBC agglutination assay reagent consists of the Fab region of a human erythrocyte-specific monoclonal antibody (mAb) conjugated to the epitope of interest (in this instance, a WNV-specific peptide). This bi-functional reagent causes the agglutination of the patient’s erythrocytes in the presence of WNV-specific antibody in the patient’s serum. Traditionally, these RBC agglutination reagents have been produced by chemical conjugation. However, a potentially easier and cheaper method involves the linking of the gene encoding the erythrocyte-specific antibody to that encoding the epitope to create a recombinant version of the bi-functional agglutination reagent through expression using prokaryotic or eukaryotic systems. To identify potential differential epitopes, 18 mAbs to WNV (NY99 strain) prM and envelope (E) proteins were assessed. One mAb (17D7) differentially recognised WNV and KUNV in ELISA and maintained recognition of its corresponding epitope upon reduction and carboxymethylation of the viral antigen, suggesting a continuous (linear) epitope. Using synthetic peptides, the epitope was mapped to a 19 amino acid sequence (WN19: E147-165) encompassing the WNV NY99 E protein glycosylation site at position 154. An amino acid substitution at position E156 of many KUNV strains abolishes this glycosylation moiety. The inability of WNV-positive horse and mouse sera to bind the synthetic peptides indicated that glycosylation was required for recognition of peptide WN19 by WNV-specific antibodies in sera. N-linked glycosylation of WN19 was achieved through expression of the peptide as a C-terminal fusion protein in mammalian cells and specific reactivity of WNV-positive horse sera to the glycosylated WN19 fusion protein was shown by Western blot. Additional sera collected from horses that had been infected with Murray Valley encephalitis virus (MVEV), which is similarly glycosylated at position E154 and exhibits high sequence identity to WNV NY99 in this region, also recognised the recombinant peptide. In contrast, no reactivity with the recombinant peptide was observed by sera from horses infected with the unglycosylated WNV subtype, KUNV. Failure of most WNV- and MVEV-positive horse sera to recognise the epitope as a deglycosylated fusion protein (75% and 100% respectively) confirmed that the N-linked glycan is important for antibody recognition of the peptide. Together, these results suggest that the induction of antibodies to the WN19 epitope during WNV infection of horses is generally associated with E protein glycosylation of the infecting viral strain. To assess the feasibility of using peptide WN19 in a rapid immunoassay, the peptide was recombinantly fused to a RBC (glycophorin)-specific single chain antibody (scFv) using previously published constructs which were developed for the bacterial expression of similar bi-functional reagents. To facilitate glycosylation of peptide WN19, the genes for the bi-functional agglutination reagents were subsequently cloned into eukaryotic expression vectors. An additional set of constructs were also produced in which the genes for the variable regions of the anti-RBC antibody were cloned into a vector for the secreted expression of an intact, humanised IgG1 molecule. Stable cell lines were produced for each of these constructs and secreted up to 700 ng/mL glycophorin-reactive antibody. The secreted recombinant protein could be harvested directly from the cell culture medium and used in RBC agglutination assays, where these bi-functional agglutination reagents could be cross-linked either with mAb 17D7 or by anti-peptide WN19 antibodies present in WNV-positive horse serum. The WNV NY99 prM protein was also identified as a useful marker of WNV-infection in horses, as well as a putative antigen to differentiate equine WNV NY99 and KUNV infections using Western blot. Two anti-WNV prM mAbs were also generated in this study and will be extremely valuable in future studies. Preliminary analysis of the prM epitope(s) bound by these mAbs and WNV-immune sera indicate that the binding site(s) is likely to be localised to pr and is conformational.
114

Characterisation and recombinant expression of antigens for the rapid diagnosis of West Nile virus infection

Jody Hobson-Peters Unknown Date (has links)
West Nile Virus (WNV) is a mosquito-borne pathogen of global significance. It is active on several continents and is responsible for recent outbreaks of fever and fatal encephalitis in humans and horses. While highly virulent strains have been reported in Europe, North, Central and South America, only a benign subtype of WNV (Kunjin virus – KUNV) occurs in Australia. However, virulent, exotic WNV strains are seen as a significant threat to Australia due to the ease with which this virus can move between continents and the presence of suitable vectors and hosts already within Australia. KUNV and WNV subtypes are antigenically and genetically very closely related and cross-react in traditional serological tests. This cross-reactivity makes it very difficult to differentiate between KUNV and WNV infections using standard serological tests. The aim of this thesis was to identify immunogenic epitopes unique to KUNV or WNV and to use these epitopes in the development of a rapid assay that would enable the diagnosis of and surveillance for exotic virulent strains of WNV in Australia. The rapid diagnostic platform chosen was a red blood cell (RBC) agglutination assay that was originally patented and commercialised by AGEN Biomedical Ltd. The RBC agglutination assay reagent consists of the Fab region of a human erythrocyte-specific monoclonal antibody (mAb) conjugated to the epitope of interest (in this instance, a WNV-specific peptide). This bi-functional reagent causes the agglutination of the patient’s erythrocytes in the presence of WNV-specific antibody in the patient’s serum. Traditionally, these RBC agglutination reagents have been produced by chemical conjugation. However, a potentially easier and cheaper method involves the linking of the gene encoding the erythrocyte-specific antibody to that encoding the epitope to create a recombinant version of the bi-functional agglutination reagent through expression using prokaryotic or eukaryotic systems. To identify potential differential epitopes, 18 mAbs to WNV (NY99 strain) prM and envelope (E) proteins were assessed. One mAb (17D7) differentially recognised WNV and KUNV in ELISA and maintained recognition of its corresponding epitope upon reduction and carboxymethylation of the viral antigen, suggesting a continuous (linear) epitope. Using synthetic peptides, the epitope was mapped to a 19 amino acid sequence (WN19: E147-165) encompassing the WNV NY99 E protein glycosylation site at position 154. An amino acid substitution at position E156 of many KUNV strains abolishes this glycosylation moiety. The inability of WNV-positive horse and mouse sera to bind the synthetic peptides indicated that glycosylation was required for recognition of peptide WN19 by WNV-specific antibodies in sera. N-linked glycosylation of WN19 was achieved through expression of the peptide as a C-terminal fusion protein in mammalian cells and specific reactivity of WNV-positive horse sera to the glycosylated WN19 fusion protein was shown by Western blot. Additional sera collected from horses that had been infected with Murray Valley encephalitis virus (MVEV), which is similarly glycosylated at position E154 and exhibits high sequence identity to WNV NY99 in this region, also recognised the recombinant peptide. In contrast, no reactivity with the recombinant peptide was observed by sera from horses infected with the unglycosylated WNV subtype, KUNV. Failure of most WNV- and MVEV-positive horse sera to recognise the epitope as a deglycosylated fusion protein (75% and 100% respectively) confirmed that the N-linked glycan is important for antibody recognition of the peptide. Together, these results suggest that the induction of antibodies to the WN19 epitope during WNV infection of horses is generally associated with E protein glycosylation of the infecting viral strain. To assess the feasibility of using peptide WN19 in a rapid immunoassay, the peptide was recombinantly fused to a RBC (glycophorin)-specific single chain antibody (scFv) using previously published constructs which were developed for the bacterial expression of similar bi-functional reagents. To facilitate glycosylation of peptide WN19, the genes for the bi-functional agglutination reagents were subsequently cloned into eukaryotic expression vectors. An additional set of constructs were also produced in which the genes for the variable regions of the anti-RBC antibody were cloned into a vector for the secreted expression of an intact, humanised IgG1 molecule. Stable cell lines were produced for each of these constructs and secreted up to 700 ng/mL glycophorin-reactive antibody. The secreted recombinant protein could be harvested directly from the cell culture medium and used in RBC agglutination assays, where these bi-functional agglutination reagents could be cross-linked either with mAb 17D7 or by anti-peptide WN19 antibodies present in WNV-positive horse serum. The WNV NY99 prM protein was also identified as a useful marker of WNV-infection in horses, as well as a putative antigen to differentiate equine WNV NY99 and KUNV infections using Western blot. Two anti-WNV prM mAbs were also generated in this study and will be extremely valuable in future studies. Preliminary analysis of the prM epitope(s) bound by these mAbs and WNV-immune sera indicate that the binding site(s) is likely to be localised to pr and is conformational.
115

Characterisation and recombinant expression of antigens for the rapid diagnosis of West Nile virus infection

Jody Hobson-Peters Unknown Date (has links)
West Nile Virus (WNV) is a mosquito-borne pathogen of global significance. It is active on several continents and is responsible for recent outbreaks of fever and fatal encephalitis in humans and horses. While highly virulent strains have been reported in Europe, North, Central and South America, only a benign subtype of WNV (Kunjin virus – KUNV) occurs in Australia. However, virulent, exotic WNV strains are seen as a significant threat to Australia due to the ease with which this virus can move between continents and the presence of suitable vectors and hosts already within Australia. KUNV and WNV subtypes are antigenically and genetically very closely related and cross-react in traditional serological tests. This cross-reactivity makes it very difficult to differentiate between KUNV and WNV infections using standard serological tests. The aim of this thesis was to identify immunogenic epitopes unique to KUNV or WNV and to use these epitopes in the development of a rapid assay that would enable the diagnosis of and surveillance for exotic virulent strains of WNV in Australia. The rapid diagnostic platform chosen was a red blood cell (RBC) agglutination assay that was originally patented and commercialised by AGEN Biomedical Ltd. The RBC agglutination assay reagent consists of the Fab region of a human erythrocyte-specific monoclonal antibody (mAb) conjugated to the epitope of interest (in this instance, a WNV-specific peptide). This bi-functional reagent causes the agglutination of the patient’s erythrocytes in the presence of WNV-specific antibody in the patient’s serum. Traditionally, these RBC agglutination reagents have been produced by chemical conjugation. However, a potentially easier and cheaper method involves the linking of the gene encoding the erythrocyte-specific antibody to that encoding the epitope to create a recombinant version of the bi-functional agglutination reagent through expression using prokaryotic or eukaryotic systems. To identify potential differential epitopes, 18 mAbs to WNV (NY99 strain) prM and envelope (E) proteins were assessed. One mAb (17D7) differentially recognised WNV and KUNV in ELISA and maintained recognition of its corresponding epitope upon reduction and carboxymethylation of the viral antigen, suggesting a continuous (linear) epitope. Using synthetic peptides, the epitope was mapped to a 19 amino acid sequence (WN19: E147-165) encompassing the WNV NY99 E protein glycosylation site at position 154. An amino acid substitution at position E156 of many KUNV strains abolishes this glycosylation moiety. The inability of WNV-positive horse and mouse sera to bind the synthetic peptides indicated that glycosylation was required for recognition of peptide WN19 by WNV-specific antibodies in sera. N-linked glycosylation of WN19 was achieved through expression of the peptide as a C-terminal fusion protein in mammalian cells and specific reactivity of WNV-positive horse sera to the glycosylated WN19 fusion protein was shown by Western blot. Additional sera collected from horses that had been infected with Murray Valley encephalitis virus (MVEV), which is similarly glycosylated at position E154 and exhibits high sequence identity to WNV NY99 in this region, also recognised the recombinant peptide. In contrast, no reactivity with the recombinant peptide was observed by sera from horses infected with the unglycosylated WNV subtype, KUNV. Failure of most WNV- and MVEV-positive horse sera to recognise the epitope as a deglycosylated fusion protein (75% and 100% respectively) confirmed that the N-linked glycan is important for antibody recognition of the peptide. Together, these results suggest that the induction of antibodies to the WN19 epitope during WNV infection of horses is generally associated with E protein glycosylation of the infecting viral strain. To assess the feasibility of using peptide WN19 in a rapid immunoassay, the peptide was recombinantly fused to a RBC (glycophorin)-specific single chain antibody (scFv) using previously published constructs which were developed for the bacterial expression of similar bi-functional reagents. To facilitate glycosylation of peptide WN19, the genes for the bi-functional agglutination reagents were subsequently cloned into eukaryotic expression vectors. An additional set of constructs were also produced in which the genes for the variable regions of the anti-RBC antibody were cloned into a vector for the secreted expression of an intact, humanised IgG1 molecule. Stable cell lines were produced for each of these constructs and secreted up to 700 ng/mL glycophorin-reactive antibody. The secreted recombinant protein could be harvested directly from the cell culture medium and used in RBC agglutination assays, where these bi-functional agglutination reagents could be cross-linked either with mAb 17D7 or by anti-peptide WN19 antibodies present in WNV-positive horse serum. The WNV NY99 prM protein was also identified as a useful marker of WNV-infection in horses, as well as a putative antigen to differentiate equine WNV NY99 and KUNV infections using Western blot. Two anti-WNV prM mAbs were also generated in this study and will be extremely valuable in future studies. Preliminary analysis of the prM epitope(s) bound by these mAbs and WNV-immune sera indicate that the binding site(s) is likely to be localised to pr and is conformational.
116

Characterisation and recombinant expression of antigens for the rapid diagnosis of West Nile virus infection

Jody Hobson-Peters Unknown Date (has links)
West Nile Virus (WNV) is a mosquito-borne pathogen of global significance. It is active on several continents and is responsible for recent outbreaks of fever and fatal encephalitis in humans and horses. While highly virulent strains have been reported in Europe, North, Central and South America, only a benign subtype of WNV (Kunjin virus – KUNV) occurs in Australia. However, virulent, exotic WNV strains are seen as a significant threat to Australia due to the ease with which this virus can move between continents and the presence of suitable vectors and hosts already within Australia. KUNV and WNV subtypes are antigenically and genetically very closely related and cross-react in traditional serological tests. This cross-reactivity makes it very difficult to differentiate between KUNV and WNV infections using standard serological tests. The aim of this thesis was to identify immunogenic epitopes unique to KUNV or WNV and to use these epitopes in the development of a rapid assay that would enable the diagnosis of and surveillance for exotic virulent strains of WNV in Australia. The rapid diagnostic platform chosen was a red blood cell (RBC) agglutination assay that was originally patented and commercialised by AGEN Biomedical Ltd. The RBC agglutination assay reagent consists of the Fab region of a human erythrocyte-specific monoclonal antibody (mAb) conjugated to the epitope of interest (in this instance, a WNV-specific peptide). This bi-functional reagent causes the agglutination of the patient’s erythrocytes in the presence of WNV-specific antibody in the patient’s serum. Traditionally, these RBC agglutination reagents have been produced by chemical conjugation. However, a potentially easier and cheaper method involves the linking of the gene encoding the erythrocyte-specific antibody to that encoding the epitope to create a recombinant version of the bi-functional agglutination reagent through expression using prokaryotic or eukaryotic systems. To identify potential differential epitopes, 18 mAbs to WNV (NY99 strain) prM and envelope (E) proteins were assessed. One mAb (17D7) differentially recognised WNV and KUNV in ELISA and maintained recognition of its corresponding epitope upon reduction and carboxymethylation of the viral antigen, suggesting a continuous (linear) epitope. Using synthetic peptides, the epitope was mapped to a 19 amino acid sequence (WN19: E147-165) encompassing the WNV NY99 E protein glycosylation site at position 154. An amino acid substitution at position E156 of many KUNV strains abolishes this glycosylation moiety. The inability of WNV-positive horse and mouse sera to bind the synthetic peptides indicated that glycosylation was required for recognition of peptide WN19 by WNV-specific antibodies in sera. N-linked glycosylation of WN19 was achieved through expression of the peptide as a C-terminal fusion protein in mammalian cells and specific reactivity of WNV-positive horse sera to the glycosylated WN19 fusion protein was shown by Western blot. Additional sera collected from horses that had been infected with Murray Valley encephalitis virus (MVEV), which is similarly glycosylated at position E154 and exhibits high sequence identity to WNV NY99 in this region, also recognised the recombinant peptide. In contrast, no reactivity with the recombinant peptide was observed by sera from horses infected with the unglycosylated WNV subtype, KUNV. Failure of most WNV- and MVEV-positive horse sera to recognise the epitope as a deglycosylated fusion protein (75% and 100% respectively) confirmed that the N-linked glycan is important for antibody recognition of the peptide. Together, these results suggest that the induction of antibodies to the WN19 epitope during WNV infection of horses is generally associated with E protein glycosylation of the infecting viral strain. To assess the feasibility of using peptide WN19 in a rapid immunoassay, the peptide was recombinantly fused to a RBC (glycophorin)-specific single chain antibody (scFv) using previously published constructs which were developed for the bacterial expression of similar bi-functional reagents. To facilitate glycosylation of peptide WN19, the genes for the bi-functional agglutination reagents were subsequently cloned into eukaryotic expression vectors. An additional set of constructs were also produced in which the genes for the variable regions of the anti-RBC antibody were cloned into a vector for the secreted expression of an intact, humanised IgG1 molecule. Stable cell lines were produced for each of these constructs and secreted up to 700 ng/mL glycophorin-reactive antibody. The secreted recombinant protein could be harvested directly from the cell culture medium and used in RBC agglutination assays, where these bi-functional agglutination reagents could be cross-linked either with mAb 17D7 or by anti-peptide WN19 antibodies present in WNV-positive horse serum. The WNV NY99 prM protein was also identified as a useful marker of WNV-infection in horses, as well as a putative antigen to differentiate equine WNV NY99 and KUNV infections using Western blot. Two anti-WNV prM mAbs were also generated in this study and will be extremely valuable in future studies. Preliminary analysis of the prM epitope(s) bound by these mAbs and WNV-immune sera indicate that the binding site(s) is likely to be localised to pr and is conformational.
117

Characterisation and recombinant expression of antigens for the rapid diagnosis of West Nile virus infection

Jody Hobson-Peters Unknown Date (has links)
West Nile Virus (WNV) is a mosquito-borne pathogen of global significance. It is active on several continents and is responsible for recent outbreaks of fever and fatal encephalitis in humans and horses. While highly virulent strains have been reported in Europe, North, Central and South America, only a benign subtype of WNV (Kunjin virus – KUNV) occurs in Australia. However, virulent, exotic WNV strains are seen as a significant threat to Australia due to the ease with which this virus can move between continents and the presence of suitable vectors and hosts already within Australia. KUNV and WNV subtypes are antigenically and genetically very closely related and cross-react in traditional serological tests. This cross-reactivity makes it very difficult to differentiate between KUNV and WNV infections using standard serological tests. The aim of this thesis was to identify immunogenic epitopes unique to KUNV or WNV and to use these epitopes in the development of a rapid assay that would enable the diagnosis of and surveillance for exotic virulent strains of WNV in Australia. The rapid diagnostic platform chosen was a red blood cell (RBC) agglutination assay that was originally patented and commercialised by AGEN Biomedical Ltd. The RBC agglutination assay reagent consists of the Fab region of a human erythrocyte-specific monoclonal antibody (mAb) conjugated to the epitope of interest (in this instance, a WNV-specific peptide). This bi-functional reagent causes the agglutination of the patient’s erythrocytes in the presence of WNV-specific antibody in the patient’s serum. Traditionally, these RBC agglutination reagents have been produced by chemical conjugation. However, a potentially easier and cheaper method involves the linking of the gene encoding the erythrocyte-specific antibody to that encoding the epitope to create a recombinant version of the bi-functional agglutination reagent through expression using prokaryotic or eukaryotic systems. To identify potential differential epitopes, 18 mAbs to WNV (NY99 strain) prM and envelope (E) proteins were assessed. One mAb (17D7) differentially recognised WNV and KUNV in ELISA and maintained recognition of its corresponding epitope upon reduction and carboxymethylation of the viral antigen, suggesting a continuous (linear) epitope. Using synthetic peptides, the epitope was mapped to a 19 amino acid sequence (WN19: E147-165) encompassing the WNV NY99 E protein glycosylation site at position 154. An amino acid substitution at position E156 of many KUNV strains abolishes this glycosylation moiety. The inability of WNV-positive horse and mouse sera to bind the synthetic peptides indicated that glycosylation was required for recognition of peptide WN19 by WNV-specific antibodies in sera. N-linked glycosylation of WN19 was achieved through expression of the peptide as a C-terminal fusion protein in mammalian cells and specific reactivity of WNV-positive horse sera to the glycosylated WN19 fusion protein was shown by Western blot. Additional sera collected from horses that had been infected with Murray Valley encephalitis virus (MVEV), which is similarly glycosylated at position E154 and exhibits high sequence identity to WNV NY99 in this region, also recognised the recombinant peptide. In contrast, no reactivity with the recombinant peptide was observed by sera from horses infected with the unglycosylated WNV subtype, KUNV. Failure of most WNV- and MVEV-positive horse sera to recognise the epitope as a deglycosylated fusion protein (75% and 100% respectively) confirmed that the N-linked glycan is important for antibody recognition of the peptide. Together, these results suggest that the induction of antibodies to the WN19 epitope during WNV infection of horses is generally associated with E protein glycosylation of the infecting viral strain. To assess the feasibility of using peptide WN19 in a rapid immunoassay, the peptide was recombinantly fused to a RBC (glycophorin)-specific single chain antibody (scFv) using previously published constructs which were developed for the bacterial expression of similar bi-functional reagents. To facilitate glycosylation of peptide WN19, the genes for the bi-functional agglutination reagents were subsequently cloned into eukaryotic expression vectors. An additional set of constructs were also produced in which the genes for the variable regions of the anti-RBC antibody were cloned into a vector for the secreted expression of an intact, humanised IgG1 molecule. Stable cell lines were produced for each of these constructs and secreted up to 700 ng/mL glycophorin-reactive antibody. The secreted recombinant protein could be harvested directly from the cell culture medium and used in RBC agglutination assays, where these bi-functional agglutination reagents could be cross-linked either with mAb 17D7 or by anti-peptide WN19 antibodies present in WNV-positive horse serum. The WNV NY99 prM protein was also identified as a useful marker of WNV-infection in horses, as well as a putative antigen to differentiate equine WNV NY99 and KUNV infections using Western blot. Two anti-WNV prM mAbs were also generated in this study and will be extremely valuable in future studies. Preliminary analysis of the prM epitope(s) bound by these mAbs and WNV-immune sera indicate that the binding site(s) is likely to be localised to pr and is conformational.
118

The effects of active surveillance and response to zoonoses and anthroponosis

Scaglione, Christopher Anthony 31 August 2005 (has links)
See front file / Health Studies / DLITT ET PHIL (HEALTH ST)
119

West Nile virus in Maricopa County, Arizona: Investigating human, vector, and environmental interactions

January 2013 (has links)
abstract: Despite the arid climate of Maricopa County, Arizona, vector-borne diseases have presented significant health challenges to the residents and public health professionals of Maricopa County in the past, and will continue to do so in the foreseeable future. Currently, West Nile virus is the only mosquitoes-transmitted disease actively, and natively, transmitted throughout the state of Arizona. In an effort to gain a more complete understanding of the transmission dynamics of West Nile virus this thesis examines human, vector, and environment interactions as they exist within Maricopa County. Through ethnographic and geographic information systems research methods this thesis identifies 1) the individual factors that influence residents' knowledge and behaviors regarding mosquitoes, 2) the individual and regional factors that influence residents' knowledge of mosquito ecology and the spatial distribution of local mosquito populations, and 3) the environmental, demographic, and socioeconomic factors that influence mosquito abundance within Maricopa County. By identifying the factors that influence human-vector and vector-environment interactions, the results of this thesis may influence current and future educational and mosquito control efforts throughout Maricopa County. / Dissertation/Thesis / M.S. Sustainability 2013
120

La protéine non-structurale NS1 du virus West Nile : étude fonctionnelle et cible potentielle de nouvelles molécules antivirales / Functional study of sNS1 viral protein during West Nile Virus infection and screening of novel molecules anti-WNV

Furnon, Wilhelm 18 January 2018 (has links)
Parmi les virus émergents transmis par des moustiques (arbovirus), le genre flavivirus est fortement représenté avec les virus Dengue, Zika, et le virus West Nile (WNV). Le WNV est responsable de nombreux cas de maladies neuroinvasives sévères, parfois mortelles, chez l'humain et les chevaux. Ce virus représente donc un problème de santé publique humaine et animale. Il n'existe pour le moment aucun vaccin humain ni aucun traitement spécifique anti-WNV.Parmi les déterminants viraux essentiels à l'infection par les flavivirus, la glycoprotéine non-structurale NS1 possède des propriétés multifonctionnelles. La forme sNS1, sécrétée dans le milieu extracellulaire, est fortement impliquée dans la dérégulation du système immunitaire de l'hôte. Ces mécanismes participent à l'évasion du virus à la réponse antivirale et, paradoxalement, à la pathogenèse observée dans les formes sévères de la maladie. L'essentiel de ces données concernant le virus de la Dengue, nous souhaitions étudier les propriétés fonctionnelles, in vitro, de la protéine sNS1WNV au cours de l'infection de cellules épithéliales, gliales et neuronales de mammifères. En effet, la structure des protéines sNS1 de flavivirus étant très similaire, notre hypothèse suppose un rôle de sNS1WNV dans les infections neuroinvasives.Si la protéine sNS1WNV ne semble pas moduler les étapes de l'infection virale, elle est cependant à l'origine d'un remodelage du cytosquelette d'actine dans les cellules épithéliales. Elle est aussi impliquée dans l'activation de voies antivirales chez les cellules neuronales non infectées. D'autre part, en ciblant sNS1 et la protéine d'enveloppe E du WNV, nous avons pu isoler, par criblage de molécules aRep (protéines artificielles à motifs répétés), des ligands de haute affinité pour ces déterminants viraux. Ces nouvelles molécules, capables de se lier spécifiquement aux protéines sNS1 et E, ont le potentiel pour servir de base au développement de nouveaux outils de diagnostics et d'agents thérapeutiques antiviraux / Among emerging mosquito-borne viruses (arboviruses), flaviviruses like Dengue, Zika and West Nile virus (WNV) are very often involved in outbreaks. WNV causes several neuroinvasive diseases, which can be lethal, in humans and horses each year. This virus is a threat for both, human and animal public health. Furthermore, there is no human vaccine currently or any specific antiviral treatments against WNV.Among viral factors which are essential for flavivirus infection, the nonstructural glycoprotein NS1 is a multifunctional protein. The secreted form sNS1, is released in the extracellular medium from infected cells and is strongly involved in immune system dysregulation. The functions of sNS1 play roles in immune escape and, paradoxically, in pathogenesis which is observed in severe forms of the disease. Because most of this data are about Dengue Virus, we would like to study, in vitro, functional properties of the sNS1WNV during infection of epithelial, glial and neuronal mammalian cells. Based on the high sNS1 protein structure similarities among flaviviruses, our hypothesis suggests a role of sNS1WNV in neuroinvasive infections.The sNS1WNV protein doesn’t seem to modulate viral infection steps. However, it is involved in actin cytoskeleton remodeling in epithelial cells. sNS1WNV is also involved in the activation of antiviral response pathways in non-infected neuronal cells. On the other hand, by targeting sNS1 and envelope protein E of WNV, we performed a screening of aRep molecules (artificial proteins with alphahelicoïdal repeats) and isolated ligands with high affinity for these viral factors. Because this new type of molecules is able to specifically bind to sNS1 and E, they have potential to be used for the development of new diagnostic tools and antiviral therapeutic agents

Page generated in 0.079 seconds