• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 4
  • 3
  • 3
  • Tagged with
  • 23
  • 23
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Hybrid-Lithography for the Master of Multi-ModeWaveguides NIL Stamp

Mistry, Akash, Nieweglowski, Krzysztof, Bock, Karlheinz 21 August 2024 (has links)
the presented work demonstrates the fabrication process of the master for nano-imprint lithography (NIL) stamp for multi-mode waveguide (MM-WG) with μ-mirror using hybrid-lithography, which includes a 2-photon-polymerization direct laser writing process (2PP-DLW) for μ-mirror surface and UV-photo lithography for MM-WGs. For the definition of the mirror surface at either end of waveguides in the master stamp, the 2PP-DLW process was used. It offers a lower surface roughness (< 0.1 λ) with fewer processing steps, alignment accuracy of ± 1 μm, prints fine and sharp contours, and relatively faster scanning for a specific material, which makes it the foremost technology over the traditional micro-mirror processes such as the dicing process, moving mask lithography, laser ablation, wet etching, and dry etching. For the fabrication of the waveguide core with rectangular cross-sections in the master stamp, UV mask exposure with SU-8 was used. It is a mass-production and low-cost technique. It gives a smooth structure with 90-degree sidewalls compared to other processes like dry etching, wet etching, mosquito method, and E-beam writing. We demonstrated the design and process of a master pattern with a density range from 0.04 to 0.2 to maintain equal pressure over the stamp in the NIL step for an almost uniform residual thickness layer.:Abstract Introduction Design of Experiments Experimental Results and Discussions Conclusion
22

Aplikace fokusovaného iontového a elektronového svazku v nanotechnologiích / Application onf the Focused Ion on Electron Beam in Nanotechnologies

Šamořil, Tomáš January 2016 (has links)
Nowadays, the systems that allow simultaneous employment of both focused electron and ion beams are very important tools in the field of micro- and nanotechnology. In addition to imaging and analysis, they can be used for lithography, which is applied for preparation of structures with required shapes and dimensions at the micrometer and nanometer scale. The first part of the thesis deals with one lithographic method – focused electron or ion beam induced deposition, for which a suitable adjustment of exposition parameters is searched and quality of deposited metal structures in terms of shape and elemental composition studied. Subsequently, attention is paid also to other types of lithographic methods (electron or ion beam lithography), which are applied in preparation of etching masks for the subsequent selective wet etching of silicon single crystals. In addition to optimization of mentioned techniques, the application of etched silicon surfaces for, e.g., selective growth of metal structures has been studied. The last part of the thesis is focused on functional properties of selected 2D or 3D structures.
23

Charakterizace struktur připravených selektivním mokrým leptáním křemíku / Characterization of structures fabricated by selective wet etching of silicon

Metelka, Ondřej January 2014 (has links)
The task of master’s thesis was to perform optimalization process for preparing metal etching mask by electron beam litography and subsequent selective wet ething of silicon with crystalographic orientation (100). Further characterization of etched surface and fabricated structures was performed. In particular, attention was given to the morphology demonstrated by scanning electron microscopy and study changes of the optical properties of gold plasmonic antennas due to their undercut.

Page generated in 0.0801 seconds