• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 666
  • 59
  • 46
  • 40
  • 38
  • 36
  • 26
  • 13
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 5
  • Tagged with
  • 1161
  • 287
  • 187
  • 181
  • 181
  • 178
  • 177
  • 151
  • 133
  • 90
  • 90
  • 78
  • 78
  • 71
  • 67
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Evaluation of mercury accumulation and biotransportation in wetland plants affected by gold mining and industrial activities

Mbanga, Odwa January 2017 (has links)
A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Master of Science, 2017 / Six different plant species that grow in a natural wetland impacted by old gold mining and other industrial activities were randomly selected with surface sediments. These included: Cyperus eragrostis (Nutgrass), Datura stramonium (Jimson weed), Melilotus alba (White sweetclover), Panicum coloratum (Blue panicgrass), Persicaria lapathifolia (Pale smartweed) and Phragmites australis (Common reed). These were used to investigate the levels of mercury in the wet and dry seasons, as well as to evaluate which of the species could be utilized for the remediation of mercury contaminated areas. The results obtained indicated that metal contamination could be determined from sediments and plant tissues. The pH values of the sediment samples were mostly neutral to slightly acidic and the redox potential was high in the wet season. On the other hand the dry season was characterised by very acidic and moderately oxidizing conditions. In summer all six plant species had higher concentration of HgT in sediments, whereas in winter the levels of HgT were elevated in the aerial tissues of the plants. The mercury accumulation patterns differed according to individual plant species and seasonality. Seasonal differences were significant but generally the MeHg concentrations in the wet season were higher in both surface sediments and plant tissues. Mercury methylation differed between species but concentration of MeHg was in general higher in plants with high concentration of mercury in sediments. The conversion of bioavailable HgT seemed more pronounced in tissues of the plants sampled in the wet season unlike those sampled in the dry season. Generally bioaccumulation factors were less than 1 in both the wet and dry seasons for all the plant species indicating that Hg was mainly retained in sediments. The translocation factor values were greater than 1 meaning metals were accumulated fundamentally in aboveground tissues for the plants D. stramonium, P. lapathifolia, P. coloratum and C. eragrostis in both the wet and dry seasons. The small bioaccumulation factors combined with translocation factor values greater than 1 were an indication that mercury present in the sediments was not the only source of mercury for the plant species growing in a contaminated environment. For P. australis the translocation of mercury was heavily influenced by seasonality, however this was not the case with M. alba. All the selected plant species demonstrated the capacity to grow in a heavily contaminated area, where P. australis and M. alba seemed to have developed an exclusion strategy to deal with toxic heavy metals therefore suitable for phytostabilisation. D. stramonium, P. lapathifolia, P. coloratum and C. eragrostis on the other hand exhibited characteristics of plants that can be successfully used for phytoextraction and phytovolatilization. / XL2018
202

Assessing availability of wetland ecosystem goods and services: a case study of the Blesbokspruit wetland in Springs, Gauteng province

Mharakurwa, Shuvai January 2016 (has links)
A research report submitted in partial fulfilment of the requirements for a Masters Degree in Environmental Sciences, School of Animal, Plant and Environmental Sciences. University of the Witwatersrand. Johannesburg, 2016. / Wetland ecosystems cover approximately 6% of the Earth’s surface area and provide important ecosystems goods and services for the sustenance of human livelihoods. According to the Millennium Ecosystems Assessment, wetlands’ ecosystems goods and services cover the provisioning, regulating, support of biodiversity, and wider community cultural values. However, wetland ecosystems are threatened by human interference in combination with effects of climate change, both of which might compromise the functionality of these socio-ecological systems. The study used a combination of observations, interviews and remote sensing combined with GIS to investigate evidence of change and the possible effects on the Blesbokspruit wetland’s natural integrity, and thus availability of ecosystem goods and services in the wetland. Documented spatial changes in land uses were analysed to determine the extent to which land use and cover changes have affected the natural capital (i.e. ecosystem goods and services) for people. The interaction of local people with the wetland was assessed in order to establish how they use the wetland as a livelihood support system. The study found that people from the surrounding communities both in the upper (Putfontein) and lower catchments (Marievale) are interacting with the wetland in different ways. The provisioning services from the Blesbokspruit wetland to the surrounding communities include water used for both domestic and agricultural activities. Both subsistence and commercial farming are taking place along the wetland (crop farming and livestock rearing). The wetland is therefore providing a safety net to disadvantaged households who are able to supplement their food. The wetland is also able to regulate climate change (carbon sequestration and flood attenuation) and water quality due to the presence of vegetation. The wetland also supports high biodiversity (flora and fauna) such as within the Marievale Bird sanctuary. Recreational services of the wetland come from the scenic views noted at both Marievale (picnic spots) and Putfontein (evidenced by children playing and swimming). The integrity of the wetland is primarily threatened by population increase and urbanisation. Remote sensing analyses of land use/land cover patterns between 1998 and 2015 indicate that major changes of the wetland have been due to human encroachment. Subsistence agriculture in the wetland has increased, which fuels damage to the wetland. Direct observation and interviews with female farmers showed that they compete for plot size which is proportional to the respect one farmer earns in the community. Water quality of the wetland seemed to be compromised by industrial activities and use of fertilisers by farmers. Unlike the pristine upper part of the wetland at Putfontein, eutrophication downstream was evidenced by polluted water, algal blooms and change of water colour at Marievale – all suggesting loss of natural benefits such as high quality water. Despite the observed threats, it is concluded that the Blesbokspruit wetland ecosystem goods and services play a significant role in supporting the well-being and livelihoods of surrounding poor communities. It is suggested that activities threatening the wetland’s integrity may be managed effectively through community-based approaches for natural resource management. There is a need for all stakeholders to be equipped with proper conservation knowledge for them to appreciate the indirect (e.g. climate regulation and water quality control) as well as direct (agricultural and water provisioning) benefits of Blesbokspruit wetland. A better understanding of this socio-ecological system would benefit from comprehensive research on hydrological dynamics associated with agricultural practices within the catchment, and the development of an integrated model of natural resources management with a strong social component. / LG2017
203

A biological mechanism for enhanced wading bird foraging patches in seasonally-pulsed wetlands

Unknown Date (has links)
In tropical wetlands, breeding wading birds rely on concentrations of aquatic fauna during the dry season to meet increased energetic demands. Wetland microtopography increases aquatic fauna concentration levels. Crocodilians modify the landscape creating deep-water refugia but their role as a mechanism for aquatic fauna concentration is unknown. I sampled alligator (Alligator mississippiensis) abundance and slough microtopography to examine correlation between the two measures. Despite increased microtopography in high alligator use sloughs, the differences were not significant. Using an in situ experimental approach, I quantified the magnitude, timing, and spatial extent of aquatic fauna concentrations within simulated alligator depressions and the surrounding marsh. Aquatic fauna density and biomass were greater within simulated depressions, thus enhancing wading bird foraging habitat. Further understanding the mechanisms creating microtopography, thus enhancing wading bird habitat, is critical to facilitate restoration and prevent declines of wading bird populations in seasonally pulsed wetlands worldwide. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2018. / FAU Electronic Theses and Dissertations Collection
204

The morphodynamic characteristics of erosional headcuts in Palmiet (Prionium serratum) wetlands

Williams, Afeefah January 2018 (has links)
>Magister Scientiae - MSc / Gully erosion and headcut migration has been at the crux of wetland degradation in South Africa. The resulting erosion and draining effect has seen more than 50% of wetlands in the country degraded. This study investigated the degradation of indigenous Palmiet, peat forming, wetlands through headcut erosion. This was done by exploring the relationship between headcut migration rate and morphodynamic characteristics through the use of multiple regression analysis. Wetlands investigated in this study occurred in the Kromme River catchment and Nuwejaars River catchment, in the Eastern Cape and Western Cape respectively. Morphodynamic characteristics assessed include headcut dimensions, gully characteristics, soil characteristics and drainage basin characteristics. These parameters were determined either through infield assessment, image analysis or laboratory analysis. Three headcut migration rate types were calculated through a combination of infield measurements and image analysis techniques executed within ArcGIS. These migration rate types include apex advancement (m/a), gully expansion (m2/a) and volume erosion (m3/a). Statistical analysis revealed significant relationships between morphodynamic characteristics and both volume erosion and gully expansion. Morphodynamic characteristics such as drop height, apex width, gully width, drainage rate and sand content were found to have a direct relationship with migration rates, whereas characteristics such as average drainage basin slope, clay content, silt content, SOM content and soil saturation were found to have an indirect relationship with headcut migration rates. Results provide insight into the headcut migration process, its influencing factors and the potential for headcut migration rate prediction. An evaluation of these results using WET-Health found that the wetland management tool captures wetland geomorphic controls to an accuracy of 68% and 70%. Furthermore, the influence of morphodynamic characteristics on migration rates contributes to the wetland rehabilitation process as it allows for the identification of headcut sites most susceptible to erosion. This will then allow for timely wetland rehabilitation, decreasing the rate of net wetland degradation and improving the management and efficiency of wetland restoration.
205

Regional scale modelling of the lower River Murray wetlands: a model for the assessment of nutrient retention of floodplain wetlands pre- and post-management.

Bjornsson, Kjartan Tumi January 2008 (has links)
Most of the lower River Murray and its floodplain wetlands are impacted upon by degradation caused by river regulation. Increasingly the restoration of these ecosystems and the river water quality has become a high priority for federal and state governments and associated departments and agencies. Public concern is adding to the pressures on these departments and agencies to restore these ecosystems and to sustainably maintain the river water quality. The long term monitoring of floodplain wetlands has been limited, compounding the difficulties faced by managers and decision makers on assessing the potential outcome of restoration options. The role of this project in the broad scheme of restoration/rehabilitation is to contribute to the construction of a model capable of increasing managers and decision makers understanding, and build consensus of potential outcomes of management option. This model was to use available data. The developed model, based on WETMOD developed by Cetin (2001), simulates wetland internal nutrient processes, phytoplankton, zooplankton and macrophyte biomass as well as the interaction (nutrient and phytoplankton exchange) between wetlands and the river. The model further simulates the potential impact management options have on the wetlands, and their nutrient retention capacity, and therefore their impact on the river nutrient load. Due to the limitation of data, wetlands were considered in categories for which data was available. Of these two had sufficient data to develop, calibrate and validate the model. Management scenarios for these two wetlands were developed. These scenarios included, the impact of returning a degraded wetland in a turbid state to a rehabilitated clear state, and the impact the removal of nutrient from irrigation drainage inflows has on wetland nutrient retention, and consequent input to the river. Scenarios of the cumulative impact of the management of multiple wetlands were developed based on using these two wetlands, for which adequate data was available, as “exemplar” wetlands, i.e. data from these wetlands were substituted for other similar wetlands (those identified as belonging to the same category). The model scenarios of these multiple wetlands provide some insight into the potential response management may have on individual wetlands, the cumulative impact on river nutrient load and how wetland morphology may relate to management considerations. The model is restricted by data availability and consequently the outputs. Further, some limitations identified during the development of the model need to be addressed before it can be applied for management purposes. However, the model and methods provide a guide by which monitoring efforts can assist in developing future modelling assessments and gain a greater insight not only at the monitoring site but also on a landscape scale. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1320131 / Thesis (Ph.D.) -- University of Adelaide, School of Earth and Environmental Sciences, 2008
206

Economic-ecological relationships in coastal wetland restoration /

Magnusson, Gisele Marie. January 2006 (has links)
Thesis (Ph. D.)--University of Rhode Island, 2006. / Typescript. Includes bibliographical references (leaves 178-197).
207

Hydric soil indicators, magnetic susceptibility and greenhouse gas emissions among differing land-uses of Prairie Pothole Region wetland soils

2013 April 1900 (has links)
Land-use change is prevalent across the Prairie Pothole Region (PPR) because of widespread agricultural expansion over the last century. Different land-use histories will affect the distributions of native vegetation and soil biogeochemistry of PPR wetlands. Furthermore, because native vegetation is partially required for wetland classification, supplementary methods are needed for proper wetland delineation. Accurate estimates of GHG emissions are required for correct climate change models; therefore proper investigation of contrasting land-use histories on GHG emissions is essential. This study focused on determining the effect that different land-use histories had on the expression of soil hydric features and magnetic susceptibility as well as examining interacting effects among contrasting land-use histories and biogeochemical controls of GHG emissions of PPR wetlands. To determine the differing effects of land-use histories on hydric soil indicators and magnetic susceptibility, fifteen ephemeral wetlands under differing land-uses (annually cultivated, restored grassland, seeded pasture and native grassland) were sampled to a depth of 1 m with samples collected every 10 cm. An upland pit was correspondingly sampled for each wetland. Soils were then analyzed for organic C, inorganic C, dithionite extractable Fe, particle size distributions, wet stable aggregate distributions and magnetic susceptibility at four different temperature treatments (room temperature, 100 °C, 300 °C and 500 °C). While some variables had observable difference among the land-uses (i.e. organic C, dithionite extractable Fe and magnetic susceptibility), the most pronounced differences were between the different pit positions (i.e. wetland pits vs. upland pits). The data was holistically analyzed through non-metric multidimensional scaling (NMDS) and position based differences were easily identified through this approach; however, only slight differences were present with respect to contrasting land-use histories. The controls of GHG emissions and their interactions were evaluated through two laboratory incubations (i.e. CH4 incubation and N2O incubation), with a factorial design using land-use history treatments as well as biogeochemical controls specific to each GHG (i.e. CH4: SO4- additions; N2O: water filled pore space [WFPS] treatments and NO3 - additions). Both incubations had the presence of interacting factors among the differing land-use histories. During the CH4 incubation, each land-use history responded oppositely to sulfate additions. During the N2O incubations, both WFPS treatments and NO3 - additions had additive effects on the emissions of N2O. Moreover, the presence of the interactions satisfied the objective of the incubation study. Overall it was determined that while land-use history significantly altered the response of GHG controls with respect to GHG emissions, it did not have strong effects in influencing hydric soil indicators and magnetic susceptibility values.
208

The role of urban wetland diversity and function in contaminant fate

Gilbert, Nicolas 01 August 2011 (has links)
It is recognized that microbial transformations are the primary mechanism of organic contaminant removal in natural and constructed wetland systems. However, not much is known about urban wetland microbial communities or their functional capacity to process contaminants. The objective of this research was to first characterize the physiological and phylogenetic diversity of microbial communities of different urban wetland types using the BIOLOG™ method and through DGGE of 16S rRNA sequences. The capacity of urban wetlands to attenuate model chlorinated aromatic compounds (2,4-D and 3-CBA) was assessed by UPLC biodegradation and 14C mineralization experiments. Toxicity tests were conducted to assess microbial tolerance to pollutant addition. In general, results indicate that urbanization has a homogenizing effect on microbial community structure and distribution within urban wetland systems, regardless of type. Urban wetlands also appear to have a limited capacity to remove chlorinated organic pollutants. Microbial community tolerance to chlorinated organic pollutants is relatively high, whereas heavy metal tolerance was found to coincide with history of contaminant exposure. / UOIT
209

Carbon and nitrogen mineralization in wetland soils of the Canadian Prairies

Dedzoe, Christian Dela 24 September 2010
Wetland soils form an integral part of the agricultural hummocky landscape in the Canadian Prairies. These soils sequester carbon and can serve as sources of greenhouse gases. Three distinctly different but contiguous soils Humic Luvic Gleysols (HLG), Eluviated Dark Brown Chernozems (EDBC) and Calcareous Dark Brown Chernozems (CDBC) located in the St. Denis National Wildlife Area (SDNWA) in four wetlands were selected for study with the aim of comparing the carbon (C) and nitrogen (N) mineralization parameters and determining soil-related factors that influence C and N mineralization in these soils. A short-term aerobic incubation study (16 d) was conducted to determine C mineralization. Nitrogen mineralization was examined using two soil N availability indices: nutrient supply rate (NSR) in a short-term incubation study (14 d) and aerobic leaching-incubation in a long-term study (16 wk). A first order model using non-linear least squares regression was fitted to cumulative C and N curves to determine C and N mineralization parameters (C mineralization potential, Co and C mineralization rate constant, kC; N mineralization potential, No and N mineralization rate constant, kN) for each soil type. Mean cumulative C mineralization, Co, mean cumulative N mineralization and No were highest in the surface horizons and decreased with depth in all the soils. The mean cumulative CO2 production values for the surface horizons were > 150 mg CO2-C kg1 soil while the lower horizon values were < 80 mg CO2-C kg1 soil. Surface mean cumulative N mineralization values were between 5 mg N kg1 soil and 10 mg N kg1 soil with the lower horizons being < 5 mg N kg1 soil. The pattern was similar for Co and No in the surface horizons with values ranging from 200 mg CO2-C kg1 soil to > 300 mg CO2-C kg1 soil and from 8 mg N kg1 soil to 28 mg N kg1 soil, respectively. Nutrient supply rate also showed a similar pattern. The clay fraction showed a stronger negative correlation with the C mineralization parameters in the CDBC than in the other two soils. Organic C and N showed a highly significant positive correlation with almost all the mineralization parameters in all the soils. Overall, notwithstanding the differences in pedogenetic characteristics of the three soils, few significant differences were observed when their C and N mineralization assays were compared. The similarity in the biochemical characteristics of the soils suggests that the observed pedogenic differences do not reflect significantly in the C and N mineralization. Although the pedogenic differences are large, the effects of these differences on soil management are not agronomically significant and the soils can be managed together.
210

Treatment of Graywater as a Suitable Solution to Save Water and Electricity for Iraq's Householders

Tawfiq, Wamid January 2011 (has links)
Conscious governments in the developing countries try to keep abreast of developments, by offering better services to their citizens; one of the important services is to preserve the natural water resources. Implementation of constructed wetlands part of sustainable water resource management and ecosystem is a new approach for water treatment and biological disposal of contaminants, therefore families can contribute to these treatments through the use this system in their houses.  In order to meet the demand of daily water consumption by separating greywater from wastewater and for its reuse after treatment constructed wetland systems are one of the successful ecological treatments to reduce the concentration of pollutants in greywater. In view of the acute water crisis supply in Iraq, the best solution found for covering the daily consumption of householders is to apply the constructed wetland for treatment of greywater. The implementation of green roofs technique is one of the best ways to intercept rainwater. Especially in Iraq, where this technique can be used to provide thermal insulation, and an appropriate environment, to use the roofs for sleeping at night in the summer season.

Page generated in 0.0558 seconds