• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mechanisms Controlling Distribution of Cosmopolitan Submerged Aquatic Vegetation: A Model Study of Ruppia maritima L. (widgeongrass) at the Everglades-Florida Bay Ecotone

Unknown Date (has links)
Aquatic plants and submerged aquatic vegetation (SAV) are some of the most wide-ranging species and create important habitat for fish and wildlife in many ecosystems, including highly variable coastal ecotones. Mechanistically understanding factors controlling current distributions of these species is critical to project future distribution and abundance under increasing variability and climate change. I used a population-based approach to quantify the effects of spatial and temporal variability on life history transitions of the SAV Ruppia maritima L. (widgeongrass) in the highly dynamic Everglades-Florida Bay ecotone as a model to (1) examine which life history stages were most constrained by these conditions and (2) determine how management can promote life history development to enhance its distribution, an Everglades restoration target. Ruppia maritima life history transitions were quantified in a series of laboratory and field experiments encompassing a ra nge of abiotic and biotic factors known to affect seagrass and SAV (salinity, salinity variability, temperature, light and nutrients and seed bank recruitment and competition). These studies revealed that R. maritima life history varied east to west across the Everglades ecotone, driven by multiple gradients in abiotic factors that constrained different life history transitions in distinct ways. Based on this examination, persistence of SAV populations from dynamic coastal environments is highly dependent on large reproductive events that produce high propagule densities for recruitment. Large productive meadows of SAV also depend on high rates of clonal reproduction where vegetation completely regenerates in a short amount of time. Therefore, in hydrologically variable systems, maintenance or increases in SAV reproduction is required for population persistence through recruitment. However, SAV communities that do not experience high rates of sexual reproduction are dependent on successful seed germination, seedling and adult survival and clonal reproduction for biomass production and maintenance. Seedling survival and to a lesser extent, adult survival, are bottlenecks that can limit life history transitions under highly variable hydrological conditions. To ensure long-term survival in these communities, management activities that increase survival and successful life history development through these critical stages will be beneficial. If not, SAV populations may become highly reduced and ephemeral, providing less productive habitat. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2015. / FAU Electronic Theses and Dissertations Collection

Page generated in 0.0749 seconds