• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Impact on yield and water productivity of wheat by access to irrigation scheduling technologies in Koga Irrigation Scheme, Ethiopia / Utvärdering av hur tillgång till teknologier för bevattningsplanering påverkar skörd och vattenproduktivitet för vete i Koga bevattningssystem, Etiopien

Svedberg, Elin January 2019 (has links)
Improving water use efficiency is included in the Sustainable Development Goals of the United Nations. Ethiopia is a developing country struggling with food production as well as water scarcity. This study presents the results of a statistical analysis of changes in water productivity (i.e. yield versus water usage), wheat yield and irrigation amount by implementation of irrigation scheduling in Koga Irrigation Scheme, north-west Ethiopia. Highest water usage (570 mm), lowest water productivity (0.5 kg m-3) and lowest yield (2800 kg ha-1) were obtained for the control group (i.e. traditional irrigation scheduling, based on experience). All groups which implemented some irrigation scheduling displayed higher water productivity than the control group. The highest water productivity and yield was achieved with a soil moisture sensor (Chameleon) technology, with increases of 58 % and 32 % with respect to the control group, respectively. Nitrogen had a positive effect on both yield and water productivity, however, the interaction effects between applied nitrogen and implemented irrigation scheduling were considered insignificant. This study is concluding that implementation of irrigation scheduling should be a successful approach for improving yield as well as water productivity in Koga. / En förbättrad effektivitet i vattenanvändningen ingår i Förenta nationernas Globala mål för hållbar utveckling. Etiopien är ett utvecklingsland med utmaningar i såväl matproduktion som vattenbrist. Denna studie presenterar resultaten av en statistisk analys av förändringar i vattenproduktivitet (dvs skörd per vattenmängd), skörd och bevattningmängd genom implementering av verktyg för bevattningsplanering i Koga bevattningsområde, nordvästra Etiopien. Högsta vattenförbrukning (570 mm), lägsta vattenproduktivitet (0,5 kg m-3) och lägsta skörd (2800 kg ha-1) erhölls för kontrollgruppen. Alla grupper som infört någon typ av bevattningsplanering visade högre vattenproduktivitet än kontrollgruppen (dvs traditionell bevattningsplanering baserad på erfarenhet). Den högsta vattenproduktiviteten och skörden uppnåddes med en vattenfuktsmätare (Chameleon), med ökningar på 58 % respektive 32 % jämfört med kontrollgruppen. Kväve hade en positiv effekt på både skörd och vattenproduktivitet, men interaktionseffekterna mellan kväve och de implementerade bevattningsplaneringarna ansågs försumbara. Denna studie drar slutsatsen att införandet av någon typ av bevattningsplanering bör vara ett framgångsrikt tillvägagångssätt för att förbättra skörd samt vattenproduktivitet i Koga. / “Using Remote Sensing in support of solutions to reduce agricultural water productivity gaps” (Capacity development for increasing water productivity) (GCP/INT/229/NET)
2

Assessing the use of wetting front detectors in water management at Dzindi Small Small Scale Irrigation Scheme in Limpopo Province

Maduwa, Khathutshelo 18 April 2017 (has links)
MESHWR / Department of Hydrology and Water Resources / Irrigation uses the largest amount of water, estimating to 60 % of the total consumption in South Africa. For this reason, the efficient and reasonable use of water by irrigators is of paramount importance. Thus, this study was carried out to assess the suitability of Wetting Front Detectors (WFDs) in improving water management. The study involved an on-farm survey; field installations; testing of WFD technology on selected plots within the scheme; identification of the crops grown; documentation of the current water supply and documentation of the challenges faced by farmers in relation to irrigation. These were carried out to identify the ideal situations in the scheme. Irrigation scheduling helps farmers to know when to irrigate and amount of water required supplying for crop need. The study presented WFD, as a means of improving irrigation efficiency. The WFD is a simple tool that helps farmers to identify what is occurring around the root zone. Four plots with a representative farmer in each of the plot were identified in four Blocks (Block 1 farmer 1, Block 1 farmer 2; Block 2 farmer 1; Block 3 farmer 1 and Block 4 farmer 1). On-farm experiment of the WFD was carried out. However, with Block 4 farmer 1, insufficient data was collected due to absence of LongStop equipment. This also involved field installation, observation and measurements of the LongStops (LSs) and FullStops (FSs) WFDs at placement depth of 30 cm, 45 cm and 60 cm. The efficiency of an irrigation system depends on different performance indicators including Irrigation Efficiency (IE), Conveyance Efficiency (CE), Application Efficiency (AE), Storage Efficiency (SE), Distribution Uniformity (DU) and Coefficient uniformity (CU). In this study, attention was focused only on DU; CU and SE, as represented by water moisture availability. All the DU for all plots in blocks were below the standard DU of furrow, which is 65%. Farmer 2, in Block 1, had a higher DU and CU, which were 60% and 68%, respectively- considered closer to the standard DU value. For the other farmers, their DU and CU prior to irrigation were very low, which indicated that there was uneven distribution of water in these plots. The poor DU in Block 1 farmer 1, indicated by the uneven infiltrated water, resulted in excessive watering. Analysing the WFD showed that farmers were performed well in all the Blocks, except for farmer 1 in Block 1. Average soil moisture content result indicated high water loss through deep percolation. The highest volumes of water recorded before and after irrigation were 131 ml and 159 ml, respectively, for LS90 placed at a depth of 90 cm in Block 2 farmer 1. High volumes of water were collected in Block 1 farmer 2, Block 2 farmer 1 and Block 3 farmer 1 before and after irrigation. The result showed that, the more placement depth down the soil profile, the more accumulation of water in the LSs. Therefore, it was recommended that farmers continue to use the WFD as a tool for irrigation efficiency. However, there is need for improvement and capacity building in using the tool.

Page generated in 0.067 seconds