• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Role of the seed coat in the dormancy of wheat (Triticum aestivum) grains.

Rathjen, Judith Rebecca January 2006 (has links)
Title page, contents and abstract only. The complete thesis in print form is available from the University of Adelaide Library. / Pre-harvest sprouting (PHS) is an important economic problem which affects a significant proportion of the Australian wheat crop through quality downgrading. Grain dormancy is the most effective means of overcoming germination in the wheat spikelet at harvest maturity. It has been a consistent observation over a long period of time that dormant red-grained wheat genotypes are almost more dormant than dormant white-grained genotypes. In white-grained wheat, there are two factors which contribute to dormancy, embryo sensitivity to abscisic acid (ABA) and an interacting and unknown seed coat factor. The proposed dormancy model is that complete dormancy can only be achieved with the coordinate expression of these two factors. This primary objective of this project was to determine the role of this putative seed coat factor in grain dormancy of white-grained wheat."--Abstract. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1259900 / Thesis (Ph.D.) -- University of Adelaide, School of Agriculture, Food and Wine, 2006
2

Role of the seed coat in the dormancy of wheat (Triticum aestivum) grains.

Rathjen, Judith Rebecca January 2006 (has links)
Title page, contents and abstract only. The complete thesis in print form is available from the University of Adelaide Library. / Pre-harvest sprouting (PHS) is an important economic problem which affects a significant proportion of the Australian wheat crop through quality downgrading. Grain dormancy is the most effective means of overcoming germination in the wheat spikelet at harvest maturity. It has been a consistent observation over a long period of time that dormant red-grained wheat genotypes are almost more dormant than dormant white-grained genotypes. In white-grained wheat, there are two factors which contribute to dormancy, embryo sensitivity to abscisic acid (ABA) and an interacting and unknown seed coat factor. The proposed dormancy model is that complete dormancy can only be achieved with the coordinate expression of these two factors. This primary objective of this project was to determine the role of this putative seed coat factor in grain dormancy of white-grained wheat."--Abstract. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1259900 / Thesis (Ph.D.) -- University of Adelaide, School of Agriculture, Food and Wine, 2006
3

Carbohydrate and nitrogen reserves in the hard red winter wheat (Triticum aestivum L.) variety 'Newton'

Wall, Gerard Walter January 1982 (has links)
Photocopy of typescript.
4

Mechanisms of dormancy, preharvest sprouting tolerance and how they are influenced by the environment during grain filling and maturation in wheat (Triticum aestivum L.)

Biddulph, Thomas Benjamin January 2007 (has links)
[Truncated abstract] Wheat is the main crop in Australia and there are stringent quality requirements. Preharvest sprouting induced by rainfall between maturity and harvest lowers grain quality from premium to feed grades and reduces yield. Wheat production has expanded into the southern Western Australian region where preharvest sprouting occurs in ~1 in 4 seasons and development of more preharvest sprouting tolerant genotypes is required. The main mechanism for improving preharvest sprouting tolerance is grain dormancy. There is genetic variation for dormancy based in the embryo and seed coat but dormancy is complex and is influenced by environmental conditions during grain filling and maturation. Screening and selecting for preharvest sprouting tolerance is problematic and the level of tolerance needed for regions which differ in the level of dormancy they impose, requires clarification. The research presented here aims to answer the underlying question for breeders of how much dormancy is required for preharvest sprouting tolerance in contrasting target environments of the central and coastal wheat belt regions of Western Australia. In the central and coastal wheat belt regions, field trials with modified environments were used to determine the environmental influence on dormancy. Water supply (without directly wetting the grain) and air temperature were modified during grain development in a range of genotypes with different mechanisms of dormancy to determine the influence of environment on dormancy. ... Genotypes with embryo dormancy were consistently the most preharvest sprouting tolerant, even though this dormancy was influenced by the environmental conditions in the different seasons. Pyramiding the embryo component with the specific seed coat component and/or awnless head trait removed some of the environmental variation in preharvest sprouting tolerance, but this was generally considered excessive to the environmental requirements. The methods developed here, of field imposed stresses may provide a valuable tool to further understand the influence of environment on the regulation of dormancy, as different phenotypes can be made with the same genotype. Moisture stress, sudden changes in water supply or high temperatures during the late dough stages influenced dormancy phenotype and should be considered and avoided if possible when selecting locations and running trials for screening for genetic differences in preharvest sprouting tolerance. In the Western Australian context, the embryo component of dormancy appeared to be sufficient and should be adopted as the most important trait for breeding for preharvest sprouting tolerance.

Page generated in 0.0577 seconds