• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Developing Test Methods for the Evaluation of Scooter Performance in Winter Conditions

Ohri, Varun 09 December 2013 (has links)
Electric mobility scooters are increasing in popularity and are used extensively by individuals with mobility impairments to conduct activities of daily living. Scientific literature on the safety and efficacy of scooters in winter conditions is sparse and the current technical standards for scooters do not mandate testing in these conditions. This study paves the way for more rigorous standard testing by: 1) Describing a novel, motion-capture based method to quantify the tractive performance of scooters; 2) Describing methods to create a wide variety of simulated winter conditions; 3) Presenting pilot-test results of a scooter driven in these winter conditions. The outcomes of this study are significant because it is the first study to evaluate the performance of a scooter in winter conditions. Furthermore, it constitutes the first phase of a broader initiative to develop a rigorous, new winter test method for scooters and drive improvements in safety, performance and design.
2

Developing Test Methods for the Evaluation of Scooter Performance in Winter Conditions

Ohri, Varun 09 December 2013 (has links)
Electric mobility scooters are increasing in popularity and are used extensively by individuals with mobility impairments to conduct activities of daily living. Scientific literature on the safety and efficacy of scooters in winter conditions is sparse and the current technical standards for scooters do not mandate testing in these conditions. This study paves the way for more rigorous standard testing by: 1) Describing a novel, motion-capture based method to quantify the tractive performance of scooters; 2) Describing methods to create a wide variety of simulated winter conditions; 3) Presenting pilot-test results of a scooter driven in these winter conditions. The outcomes of this study are significant because it is the first study to evaluate the performance of a scooter in winter conditions. Furthermore, it constitutes the first phase of a broader initiative to develop a rigorous, new winter test method for scooters and drive improvements in safety, performance and design.

Page generated in 0.0737 seconds