• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Parasite on Crayfish : Characterisation of Their Pathogenesis, Host Interactions and Diversity

Bangyeekhun, Eakaphun January 2002 (has links)
<p>The crayfish plague refractory crayfish, <i>Pacifastacus leniusculus</i>, which can harbour the fungal parasite within melanotic sheath, are found to constitutively express the gene encoding for prophenoloxidase (proPO) after mimicking parasite attack. In contrast, the susceptible crayfish, <i>Astacus astacus</i>, responds to the parasite by increased levels of proPO transcript, particularly in the semigranular haemocytes. The upregulation of proPO could confer a temporary resistance towards the fungal infection, suggesting that additional factors are involved in maintaining the balance between host and parasite. The resistant crayfish may have adapted to the parasite by increasing the transcript level of immune genes. The parasite can be considered as a symbiont since it does not harm the host rather than it activates the immune gene and possibly preventing other pathogens to become established.</p><p>Two serine proteinase genes encoding a subtilisin-like (<i>AaSP1</i>) and a trypsin (<i>AaSP2</i>) enzyme were isolated from the crayfish plague fungus, <i>Aphanomyces astaci</i>. These proteinases are prepropeptides and generate mature proteins of 39 kDa and 29 kDa, respectively. Characterisation of <i>AaSP1</i> suggests that the enzyme may be involved in intracellular control mechanisms rather than playing a role in pathogenesis. The <i>AaSP2 </i>transcript was not controlled by catabolic repression, but was induced by crayfish plasma, implying a role in pathogenesis toward the crayfish host. </p><p>Physiology and genetics of five <i>Aphanomyces</i> strains, which were isolated from moribund crayfish, were characterised with regard to their pathogen diversity. These strains are not virulent against crayfish. Some physiological properties of these strains differed from <i>A. astaci</i>, such as growth rate, germination and production of chitinase. Genetic analysis clearly indicated that they are not related to <i>A. astaci</i> and their name are proposed to be <i>Aphanomyces repetans</i>.</p><p>The crayfish <i>P. leniusculus </i>was found to be susceptible to white spot syndrome virus infection. The virus has a significant effect to the population of crayfish haemocyte. The number and proportion of granular cell from virus-infected crayfish were higher than in controls, indicating granular cells are more resistant to and may interact by some means with the virus.</p><p>Two morphotypes of the crayfish parasite <i>Psorospermium haeckeli</i> obtained from different crayfish hosts of different geographical origin were analysed for ribosomal ITS DNA in order to compare their genetic diversity. The sequence difference between them was found largely in ITS 1 and ITS 2 regions, which was variable in length and showed 66% and 58% sequence similarity. Thus, different morphotypes of <i>P. haeckeli</i> are genetically diverse.</p>
2

Parasite on Crayfish : Characterisation of Their Pathogenesis, Host Interactions and Diversity

Bangyeekhun, Eakaphun January 2002 (has links)
The crayfish plague refractory crayfish, Pacifastacus leniusculus, which can harbour the fungal parasite within melanotic sheath, are found to constitutively express the gene encoding for prophenoloxidase (proPO) after mimicking parasite attack. In contrast, the susceptible crayfish, Astacus astacus, responds to the parasite by increased levels of proPO transcript, particularly in the semigranular haemocytes. The upregulation of proPO could confer a temporary resistance towards the fungal infection, suggesting that additional factors are involved in maintaining the balance between host and parasite. The resistant crayfish may have adapted to the parasite by increasing the transcript level of immune genes. The parasite can be considered as a symbiont since it does not harm the host rather than it activates the immune gene and possibly preventing other pathogens to become established. Two serine proteinase genes encoding a subtilisin-like (AaSP1) and a trypsin (AaSP2) enzyme were isolated from the crayfish plague fungus, Aphanomyces astaci. These proteinases are prepropeptides and generate mature proteins of 39 kDa and 29 kDa, respectively. Characterisation of AaSP1 suggests that the enzyme may be involved in intracellular control mechanisms rather than playing a role in pathogenesis. The AaSP2 transcript was not controlled by catabolic repression, but was induced by crayfish plasma, implying a role in pathogenesis toward the crayfish host. Physiology and genetics of five Aphanomyces strains, which were isolated from moribund crayfish, were characterised with regard to their pathogen diversity. These strains are not virulent against crayfish. Some physiological properties of these strains differed from A. astaci, such as growth rate, germination and production of chitinase. Genetic analysis clearly indicated that they are not related to A. astaci and their name are proposed to be Aphanomyces repetans. The crayfish P. leniusculus was found to be susceptible to white spot syndrome virus infection. The virus has a significant effect to the population of crayfish haemocyte. The number and proportion of granular cell from virus-infected crayfish were higher than in controls, indicating granular cells are more resistant to and may interact by some means with the virus. Two morphotypes of the crayfish parasite Psorospermium haeckeli obtained from different crayfish hosts of different geographical origin were analysed for ribosomal ITS DNA in order to compare their genetic diversity. The sequence difference between them was found largely in ITS 1 and ITS 2 regions, which was variable in length and showed 66% and 58% sequence similarity. Thus, different morphotypes of P. haeckeli are genetically diverse.
3

Application of dietary b-1,3-glucan in enhancing resistance of Penaeus monodon against vibrio and viral infections

Chang, Cheng-Fang 17 July 2000 (has links)
Three series of studies were conducted to quantify the effectiveness of dietary incorporation of b-1,3-glucan (BG) from Schizophyllum commune in enhancing the immunity and resistance of grass prawn Penaeus monodon to vibriosis and white spot syndrome virus (WSSV) infections. In the first series of studies, three experiments were conducted to evaluate the effectiveness of dietary b-1,3-glucan on shrimp growth and resistance to vibriosis. Weight gain, survival and feed efficiency of juvenile shrimp (0.5 ¡Ó 0.1 g) were not significantly different (P>0.05) after being fed the diets containing BG 0, 0.2, 2, 10 g/kg diet for 18 weeks. Subadult shrimp (20.4 ¡Ó 2.1 g) fed the diet containing of BG 2 g/kg diet for 10 days showed a significantly (P<0.001) enhanced resistance against vibriosis. Postlarvae fed with the BG diet (2 g/kg diet) were more resistant (P<0.001) against starvation and V. harveyi challenges than the postlarvae fed non-BG diet. Additive disease resistance was observed when polyphosphorylated L-ascorbic acid (PAA) was used together with BG. In challenge tests with V. damsela, shrimp fed with PAA (0.2 g/kg diet) + BG (2 g/kg diet) diet for 20 days had a survival rate up to 60%. In the second series of studies, two experiments were conducted to evaluate the effectiveness of dietary b-1,3-glucan on wound healing and immunity in spawners. Dietary supplement of BG reduced the chance of infections, but did not help wound healing as did the supplement of PAA. And regardless of indoor or outdoor rearing, the survival rate of brooder (135 ¡Ó 25 g) fed the BG (2 g/kg diet) diet was higher (P<0.001) than that of the non-BG group. Fed the BG brooders showed enhanced haemocyte phagocytic activity, cell adhesion and superoxide anion production then the control group. Third series of studies evaluated the effectiveness against white spot syndrome virus (WSSV). Six days after being challenged with WSSV, 12.2 % of the BG-treated (2 g/kg diet for 15 days) postlarvae (PL15) and 20 % BG-treated (2 g/kg diet for 20 days) juveniles (5.5 ¡Ó 0.5 g) were still alive; while all non-BG-treated shrimp died. In order to quantify the effectiveness of BG to WSSV, juveniles (6.5 ¡Ó 0.4 g) were fed diets containing graded levels of BG. The results showed that shrimp fed the diet containing BG 10 g/kg for 20 days had the highest (P<0.001) survival rate (42 %) among all groups. Shrimp that received diets supplemented with BG at a dosage >2 g/kg recuperated 9 ~ 12 days after WSSV challenge; while the group fed diets with no or 1 g/kg BG suffered from rapid decrease in total haemocyte count, phagocytic activity, phenoloxidase, O2-, superoxide dismutase (SOD) production and subsequent high mortality. The results in this study showed that b-1,3-glucan is effective in enhancing the phagocytic activity, phenoloxidase, O2- and SOD productions and consequently the resistance of postlarval, juvenile, subadult and brooder P. monodon against vibriosis and viral infections. Since prolonged use of BG, even at optimal dietary levels, decreased the immunity of the shrimp, care therefore must be taken to maximize its effectiveness. A cycle of dietary BG supplement of 2 ~ 10 g/kg diet for 20 days with an intermission of 10 days may serve the purposes.

Page generated in 0.1723 seconds