• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

New multi-standard dual-wideband and quad-wideband asymmetric step impedance resonator filters with wide stop band restriction

Al-Yasir, Yasir I.A., Tu, Yuxiang X., Ojaroudi Parchin, Naser, Abdulkhaleq, Ahmed M., Kosha , Jamal S.M., Ullah, Atta, Abd-Alhameed, Raed, Noras, James M. 28 September 2023 (has links)
Yes / New multi-standard wide band filters with compact sizes are designed for wireless communication devices. The proposed structures realize dual-wideband and quad-wideband characteristics by using a new skew-symmetrical coupled pair of asymmetric stepped impedance resonators, combined with other structures. The first and second dual-wideband filters realize fractional bandwidths (FBW) of 43.2%/31.9% at the central frequencies (CF) of 1.875/1.63 GHz, and second bandwidths of 580 MHz/1.75 GHz at CF of 5.52/4.46 GHz, respectively. The proposed quad-band filter realizes its first/second/third/fourth pass bands at CF 2.13/5.25/7.685/9.31 GHz with FBW of 46.0%/11.4%/4.6%and 5.4%, respectively. The wide pass bands are attributed to the mutual coupling of the modified ASIR resonators and their bandwidths are controllable by tuning relative parameters while the wide stop band performance is optimized by the novel interdigital cross coupled line structure and parallel uncoupled microstrip line structure. Moreover, the quad band is generated by introducing the novel defected rectangle structure. These multi-standard filters are simulated, fabricated and measured, and measured results agree well with both simulated results and theory predictions. The good in-band and out-of-band performances, the miniaturized sizes and simple structures of the proposed filters make them very promising for applications in future multi-standard wireless communication. / Horizon 2020 Framework Programme(European Union), Grant/Award Number:H2020-MSCA-ITN-2016 SECRET-722 424
2

Design, modelling and implementation of several multi-standard high performance single-wideband and multi-wideband microwave planar filters

Tu, Yuxiang X. January 2016 (has links)
The objectives of this work are to review, investigate and model the microwave planar filters of the modern wireless communication system. The recent main stream of microwave filters are classified and discussed separately. Various microwave filters with detailed applications are investigated in terms of their geometrical structures and operational performances. A comprehensive theoretical study of microwave filters is presented. The main types of microwave filters including the basic low-pass filters such as Butterworth and Chebyshev filters are fully analysed and described in detail. The transformation from low-pass prototype filters to high-pass filters, band-pass filters and band-stop filters are illustrated and introduced. Research work on stepped impedance resonator (SIR) and asymmetric stepped impedance resonator (ASIR) structure is presented. The characteristics of λg/4, λg/2 and λg (λg is the guided wavelength of the fundamental frequency in the free space) type SIR resonators, and the characteristic of asymmetric SIR resonator are categorized and investigated. Based on the content mentioned above, novel multi-standard high performance asymmetric stepped impedance resonator single-wideband and dual-wideband filters with wide stopbands are proposed. The methodologies to realize wide passband and wide stop-band filters are detailed. In addition, multi-standard high performance triplewideband, quadruple-wideband and quint-wideband filters are suggested and studied. The measurement results for all prototype filters agree well with the theoretical predictions and simulated results from Ansoft HFSS software. The featured broad bandwidths over single/multiple applicable frequency bands and the high performances of the proposed filters make them very promising for applications in future multistandard wireless communication.
3

Design, Modelling and Implementation of Several Multi-Standard High Performance Single-Wideband and Multi-Wideband Microwave Planar Filters

Tu, Yuxiang X. January 2016 (has links)
The objectives of this work are to review, investigate and model the microwave planar filters of the modern wireless communication system. The recent main stream of microwave filters are classified and discussed separately. Various microwave filters with detailed applications are investigated in terms of their geometrical structures and operational performances. A comprehensive theoretical study of microwave filters is presented. The main types of microwave filters including the basic low-pass filters such as Butterworth and Chebyshev filters are fully analysed and described in detail. The transformation from low-pass prototype filters to high-pass filters, band-pass filters and band-stop filters are illustrated and introduced. Research work on stepped impedance resonator (SIR) and asymmetric stepped impedance resonator (ASIR) structure is presented. The characteristics of λg/4, λg/2 and λg (λg is the guided wavelength of the fundamental frequency in the free space) type SIR resonators, and the characteristic of asymmetric SIR resonator are categorized and investigated. Based on the content mentioned above, novel multi-standard high performance asymmetric stepped impedance resonator single-wideband and dual-wideband filters with wide stopbands are proposed. The methodologies to realize wide passband and wide stop-band filters are detailed. In addition, multi-standard high performance triplewideband, quadruple-wideband and quint-wideband filters are suggested and studied. The measurement results for all prototype filters agree well with the theoretical predictions and simulated results from Ansoft HFSS software. The featured broad bandwidths over single/multiple applicable frequency bands and the high performances of the proposed filters make them very promising for applications in future multistandard wireless communication.

Page generated in 0.0492 seconds