• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude et conception de systèmes miniaturisés « intelligents » pour l’amortissement non-linéaire de vibration / Study and design of "smart" miniaturized systems for non-linear vibration damping

Viant, Jean-Nicolas 06 July 2011 (has links)
L’amortissement de vibrations mécaniques trouve de nombreuses applications dans le domaine du contrôle acoustique ou de la réduction de contraintes dans l’industrie (machine outil), le génie civil (structure autoportée), ou encore l’aéronautique (réduction de contrainte lors des manoeuvres). Les recherches actuelles tendent principalement vers des méthodes utilisant des matériaux piézoélectriques collés à la surface des structures à traiter. Une technique prometteuse, développée au LGEF à l’INSA de Lyon, est l’amortissement de vibration d’une structure mécanique par méthode SSDI (pour Synchronized Switch Damping on an Inductor). Cette technique d’amortissement semi-active exploite un procédé non-linéaire de traitement de la tension aux bornes d’un élément piézoélectrique, capteur et actionneur à la fois. L’objectif de ce travail est de réaliser l’intégration de l’électronique de traitement de la tension aux bornes des éléments piézoélectriques en technologie microélectronique, afin de pouvoir l’embarquer sur le patch piézoélectrique à terme. Une analyse des techniques d’amortissement publiées permet d’y situer ce travail et de définir les points clés de la technique SSDI. Au deuxième chapitre, un certain nombre de modèles sont développés pour comparer et guider les choix de conception, et pour aboutir à des arbitrages architecturaux. Le troisième chapitre développe la conception d’un ASIC dans une technologie avec option haute tension, comprenant une fonction haute-tension de traitement du signal piézoélectrique et une chaine basse-tension d’analyse, de décision et de commande. La première réalise l’inversion de la tension piézoélectrique à l’aide d’un circuit RLC passif de conversion de l’énergie. La seconde s’attache à la détection des extremums de manière à optimiser l’amortissement. Un diviseur de tension auto-adaptatif avec protection contre les surtensions ainsi qu’un détecteur de pic de tension permettent de réaliser cette opération. Ces fonctions sont caractérisées en simulations et mesures. Le fonctionnement de l’ASIC est ensuite testé sur une structure mécanique, et les performances sont décrites et interprétées au chapitre 4. Le comportement multi-mode et la grande dynamique des signaux mécaniques traités sont des avancées par rapport à la bibliographie. / Mechanical vibration damping has many applications in industry (machine tools), civil engineering (bridge construction), or aeronautics (stress during maneuvers). Current research tends mainly to use piezoelectric materials based methods. A promising technique from the LGEF of INSA Lyon is the vibration damping of mechanical structure by so-called SSDI method (for Synchronized Switch Damping on an Inductor). This semi-active damping technique uses a non-linear process to invert the voltage across a piezoelectric element. The element is used as sensor and actuator at a time. The aim of this work is to achieve an integration of the electronic process with the SSDI voltage inversion in a microelectronic technology. It has ultimately to embed the electronic controller on the piezoelectric patch. The analysis of published damping techniques can situate this work and identify key points of the SSDI technique. In the second chapter, several models are developed to compare and decide of the best architectural design choice. The third chapter presents an ASIC design in a technology with high voltage option. The ASIC consists of a high-voltage piezoelectric signal processing part and a low-voltage control part. The first function performs piezoelectric voltage reversing by mean of a passive RLC energy conversion circuit. The second function focuses on the extremum voltage detection circuit in order to optimize damping efficiency. A self-tuning voltage divider with over-voltage protection and a peak voltage detector can perform this operation. These functions are characterized by simulations and measurements. The ASIC operation is then tested with mechanical structures, and damping performances are described and interpreted in Chapter 4. The multimodal behavior and the mechanical signals high-dynamic are new contribution as regard in the bibliography.
2

Belief Propagation Based Signal Detection In Large-MIMO And UWB Systems

Som, Pritam 09 1900 (has links)
Large-dimensional communication systems are likely to play an important role in modern wireless communications, where dimensions can be in space, time, frequency and their combinations. Large dimensions can bring several advantages with respect to the performance of communication systems. Harnessing such large-dimension benefits in practice, however, is challenging. In particular, optimum signal detection gets prohibitively complex for large dimensions. Consequently, low-complexity detection techniques that scale well for large dimensions while achieving near-optimal performance are of interest. Belief Propagation (BP) is a technique that solves inference problems using graphical models. BP has been successfully employed in a variety of applications including computational biology, statistical signal/image processing, machine learning and artificial intelligence. BP is well suited in several communication problems as well; e.g., decoding of turbo codes and low-density parity check codes (LDPC), and multiuser detection. We propose a BP based algorithm for detection in large-dimension linear vector channels employing binary phase shift keying (BPSK) modulation, by adopting a Markov random field (MRF)graphical model of the system. The proposed approach is shown to achieve i)detection at low complexities that scale well for large dimensions, and ii)improved bit error performance for increased number of dimensions (a behavior we refer to as the ’large-system behavior’). As one application of the BP based approach, we demonstrate the effectiveness of the proposed BP algorithm for decoding non-orthogonal space-time block codes (STBC) from cyclic division algebras (CDA)having large dimensions. We further improve the performance of the proposed algorithm through damped belief propagation, where messages that are passed from one iteration to the next are formed as a weighted combination of messages from the current iteration and the previous iteration. Next, we extend the proposed BP approach to higher order modulation. through a novel scheme of interference cancellation. This proposed scheme exhibits large system behavior in terms of bit error performance, while being scalable to large dimensions in terms of complexity. Finally, as another application of the BP based approach, we illustrate the adoption and performance of the proposed BP algorithm for low-complexity near-optimal equalization in severely delay-spread UWBMIMO-ISI channels that are characterized by large number (tens to hundreds)of multipath components.

Page generated in 0.0701 seconds