• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Saline lake ichnology : composition and distribution of cenozoic traces in the saline, alkaline lakes of the Kenya Rift Valley and Eocene Green River Formation, U.S.A.

Scott, Jennifer Jane 20 December 2010
A detailed study was made of the composition and distribution of modern and fossil animal and plant traces around saline, alkaline lakes in tectonically active, closed lake-basins. Modern and Pleistocene traces that were examined in lake basins of the Kenya Rift Valley (Lakes Bogoria, Magadi, and Nasikie Engida) were compared directly with fossil traces from the Eocene Lake Gosiute in the Green River Formation of Wyoming, U.S.A., which had a similar hydrochemistry. Analysis of lithofacies and the stratigraphic packaging of the sediments hosting biogenic structures was undertaken so that their vertical and lateral distribution could be used to interpret lake histories and to help to develop depositional models of enigmatic sedimentary successions. A focus was given to the application of the results for paleoecology and stratigraphy, and a model for predicting the position of different trace associations in vertical successions and in different parts of saline, alkaline lake basins has been developed. Evidence from the Kenyan lakes and Eocene Lake Gosiute shows that (1) sedimentary environments are diverse in underfilled basins, and frequent lake-level fluctuations strongly impact the distribution of sedimentary environments suitable for the production and preservation of biogenic structures; (2) the distribution of biogenic structures in underfilled basins is related to the geomorphological and structural setting, tectonic activity, catchment lithology, the basin margin or basin centre location, climate, and salinity and alkalinity, together with other finer-scale environmental and biological controls; (3) because saline environments are restrictive, sites of relatively dilute inflow (springs, rivers and deltas, ephemeral streams) provide oasis-like habitats for animals and plants, and contribute to the increased diversity and laterally variable distribution of saline-lake trace assemblages; and (4) the vertical distribution of trace fossils in a stratigraphic succession reflects changing environments through time; important stratigraphic surfaces, usually formed during periods of lake-level fall, can be recognized from the overprinting patterns of traces produced under different conditions.
2

Saline lake ichnology : composition and distribution of cenozoic traces in the saline, alkaline lakes of the Kenya Rift Valley and Eocene Green River Formation, U.S.A.

Scott, Jennifer Jane 20 December 2010 (has links)
A detailed study was made of the composition and distribution of modern and fossil animal and plant traces around saline, alkaline lakes in tectonically active, closed lake-basins. Modern and Pleistocene traces that were examined in lake basins of the Kenya Rift Valley (Lakes Bogoria, Magadi, and Nasikie Engida) were compared directly with fossil traces from the Eocene Lake Gosiute in the Green River Formation of Wyoming, U.S.A., which had a similar hydrochemistry. Analysis of lithofacies and the stratigraphic packaging of the sediments hosting biogenic structures was undertaken so that their vertical and lateral distribution could be used to interpret lake histories and to help to develop depositional models of enigmatic sedimentary successions. A focus was given to the application of the results for paleoecology and stratigraphy, and a model for predicting the position of different trace associations in vertical successions and in different parts of saline, alkaline lake basins has been developed. Evidence from the Kenyan lakes and Eocene Lake Gosiute shows that (1) sedimentary environments are diverse in underfilled basins, and frequent lake-level fluctuations strongly impact the distribution of sedimentary environments suitable for the production and preservation of biogenic structures; (2) the distribution of biogenic structures in underfilled basins is related to the geomorphological and structural setting, tectonic activity, catchment lithology, the basin margin or basin centre location, climate, and salinity and alkalinity, together with other finer-scale environmental and biological controls; (3) because saline environments are restrictive, sites of relatively dilute inflow (springs, rivers and deltas, ephemeral streams) provide oasis-like habitats for animals and plants, and contribute to the increased diversity and laterally variable distribution of saline-lake trace assemblages; and (4) the vertical distribution of trace fossils in a stratigraphic succession reflects changing environments through time; important stratigraphic surfaces, usually formed during periods of lake-level fall, can be recognized from the overprinting patterns of traces produced under different conditions.

Page generated in 0.036 seconds