• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

WMAP : Measuring how the universe began

Halpern, Mark 08 April 2008 (has links)
The universe is filled with a thermal glow called the cosmic microwave background that comes from the hot plasma which filled it early on. Measurements of this background made by the NASA satellite WMAP have determined the age, geometry and composition of the universe with new precision, determining that the universe today is dominated by a dark energy that is causing it to expand ever more rapidly. The mission has also determined that baryonic matter--the atoms and molecules we see around us--only form a few percent of the total energy density of the universe today, and has determined the epoch at which the first stars formed. Recent results give a tantalizing picture of the first very small fraction of a second in the "big bang". Six years after its launch WMAP remains healthy and the data continue to pour in. This talk will explain to a general audience what this experiment tells us about how the universe began and what it is made out of.
2

WMAP 5-year data: Let’s test Inflation

Halpern, Mark 18 April 2008 (has links)
We have released maps and data for five years of observation of the cosmic microwave background with the Wilkinson Microwave Anisotropy Probe (WMAP) and I will review the main results in this talk. A simple 6 parameter cosmological model continues to be an excellent fit to the CMB data and to our data in conjunction with other astrophysical measurements. In particular a running spectral index is not supported by the data, and constraints that the Universe is spatially flat have increased in precision. Increased sensitivity and improvements in our understanding of the instrumental beam shape have allowed us to measure for the first time a cosmic neutrino background. Neutrinos de-coupled from other matter earlier than photons did. While they are expected to have a 2 Kelvin thermal distribution today, they comprised 10% of the energy density of the Universe at the epoch of photon de-coupling. The data also allow tighter constraints on the shape of the inflationary potential via the amplitude of a gravitational wave background new constraints on features of cosmic axions. Recorded at TRIUMF on Thursday April 17, 2008.

Page generated in 0.083 seconds