Spelling suggestions: "subject:"find conergy devevelopment"" "subject:"find conergy agentdevelopment""
1 |
Public attitudes and perceptions of wind energy development within the Rolling Plains and Breaks ecological regionTucker, Terry January 1900 (has links)
Master of Regional and Community Planning / Department of Landscape Architecture/Regional and Community Planning / John W. Keller / The Great Plains possesses one of the best sources of wind energy in North America. Based upon the need to diversify energy production domestically, wind energy’s future in both the immediate and long term should be dynamic. The success of wide scale development of this potential will be largely determined by the perceptions of local residents, who are most affected by the siting and design of wind energy projects.
Currently, regulation of this natural resource is left largely to state and county governments. A majority of these entities in the Great Plains region have no regulations governing wind energy development or employ a patchwork of "borrowed" codes from across the nation. The system of regulation of natural resources by political boundary is archaic. It fails to recognize that there are high degrees of correlation between social, economic, and natural resources without respect for artificial political boundaries.
This study is the first in the Great Plains to examine public attitudes toward the development of wind energy and its relationship to the landscape based upon ecological regions rather than political boundaries. The analysis of collected data will provide a useful tool for local planners, policy makers, and the general public in understanding the prevalent issues involved with wind energy development in this region.
|
2 |
MNS Wind Farm Project on the Nevada Test Site American Indian Rapid Cultural Assessment Of Proposed Gravel Road Improvements Trip Report, March 2001Stoffle, Richard W., Arnold, Richard W., Charles, Jerry, Cornelius, Betty, Frank-Churchill, Maurice, Miller, Vernon, Moose, Gaylene 17 April 2001 (has links)
This report presents the findings of a two-day Rapid Cultural Assessment (RCA) to assess potential impacts to resources important to American Indians from gravel road improvements associated with the Shoshone Mountain phase of the MNS Wind Farm Project on the Nevada Test Site (NTS).
The study was conducted by the American Indian Writers Subgroup (AIWS), an official committee of the Consolidated Group of Tribes and Organizations (CGTO). The CGTO is composed of 16 tribes and 3 Indian organizations that have historic or cultural ties to the NTS. The work was facilitated by Dr. Stoffle from the Bureau of Applied Research in Anthropology at the University of Arizona (UofA). Funding was provided by DOE/NV.
|
3 |
DFIG-BASED SPLIT-SHAFT WIND ENERGY CONVERSION SYSTEMSRasoul Akbari (13157394) 27 July 2022 (has links)
<p>In this research, a Split-Shaft Wind Energy Conversion System (SS-WECS) is investigated</p>
<p>to improve the performance and cost of the system and reduce the wind power</p>
<p>uncertainty influences on the power grid. This system utilizes a lightweight Hydraulic Transmission</p>
<p>System (HTS) instead of the traditional gearbox and uses a Doubly-Fed Induction</p>
<p>Generator (DFIG) instead of a synchronous generator. This type of wind turbine provides</p>
<p>several benefits, including decoupling the shaft speed controls at the turbine and the generator.</p>
<p>Hence, maintaining the generator’s frequency and seeking maximum power point</p>
<p>can be accomplished independently. The frequency control relies on the mechanical torque</p>
<p>adjustment on the hydraulic motor that is coupled with the generator. This research provides</p>
<p>modeling of an SS-WECS to show its dependence on mechanical torque and a control</p>
<p>technique to realize the mechanical torque adjustments utilizing a Doubly-Fed Induction</p>
<p>Generator (DFIG). To this end, a vector control technique is employed, and the generator</p>
<p>electrical torque is controlled to adjust the frequency while the wind turbine dynamics</p>
<p>influence the system operation. The results demonstrate that the generator’s frequency is</p>
<p>maintained under any wind speed experienced at the turbine.</p>
<p>Next, to reduce the size of power converters required for controlling DFIG, this research</p>
<p>introduces a control technique that allows achieving MPPT in a narrow window of generator</p>
<p>speed in an SS-WECS. Consequently, the size of the power converters is reduced</p>
<p>significantly. The proposed configuration is investigated by analytical calculations and simulations</p>
<p>to demonstrate the reduced size of the converter and dynamic performance of the</p>
<p>power generation. Furthermore, a new configuration is proposed to eliminate the Grid-</p>
<p>Side Converter (GSC). This configuration employs only a reduced-size Rotor-Side Converter</p>
<p>(RSC) in tandem with a supercapacitor. This is accomplished by employing the hydraulic</p>
<p>transmission system (HTS) as a continuously variable and shaft decoupling transmission</p>
<p>unit. In this configuration, the speed of the DFIG is controlled by the RSC to regulate the</p>
<p>supercapacitor voltage without GSC. The proposed system is investigated and simulated in</p>
<p>MATLAB Simulink at various wind speeds to validate the results.</p>
<p>Next, to reduce the wind power uncertainty, this research introduces an SS-WECS where the system’s inertia is adjusted to store the energy. Accordingly, a flywheel is mechanically</p>
<p>coupled with the rotor of the DFIG. Employing the HTS in such a configuration allows the</p>
<p>turbine controller to track the point of maximum power (MPPT) while the generator controller</p>
<p>can adjust the generator speed. As a result, the flywheel, which is directly connected</p>
<p>to the shaft of the generator, can be charged and discharged by controlling the generator</p>
<p>speed. In this process, the flywheel energy can be used to modify the electric power generation</p>
<p>of the generator on-demand. This improves the quality of injected power to the</p>
<p>grid. Furthermore, the structure of the flywheel energy storage is simplified by removing</p>
<p>its dedicated motor/generator and the power electronics driver. Two separate supervisory</p>
<p>controllers are developed using fuzzy logic regulators to generate a real-time output power</p>
<p>reference. Furthermore, small-signal models are developed to analyze and improve the MPPT</p>
<p>controller. Extensive simulation results demonstrate the feasibility of such a system and its</p>
<p>improved quality of power generation.</p>
<p>Next, an integrated Hybrid Energy Storage System (HESS) is developed to support the</p>
<p>new DFIG excitation system in the SS-WECS. The goal is to improve the power quality</p>
<p>while significantly reducing the generator excitation power rating and component counts.</p>
<p>Therefore, the rotor excitation circuit is modified to add the storage to its DC link directly.</p>
<p>In this configuration, the output power fluctuation is attenuated solely by utilizing the RSC,</p>
<p>making it self-sufficient from the grid connection. The storage characteristics are identified</p>
<p>based on several system design parameters, including the system inertia, inverter capacity,</p>
<p>and energy storage capacity. The obtained power generation characteristics suggest an energy</p>
<p>storage system as a mix of fast-acting types and a high energy capacity with moderate</p>
<p>acting time. Then, a feedback controller is designed to maintain the charge in the storage</p>
<p>within the required limits. Additionally, an adaptive model-predictive controller is developed</p>
<p>to reduce power generation fluctuations. The proposed system is investigated and simulated</p>
<p>in MATLAB Simulink at various wind speeds to validate the results and demonstrate the</p>
<p>system’s dynamic performance. It is shown that the system’s inertia is critical to damping</p>
<p>the high-frequency oscillations of the wind power fluctuations. Then, an optimization approach</p>
<p>using the Response Surface Method (RSM) is conducted to minimize the annualized</p>
<p>cost of the Hybrid Energy Storage System (HESS); consisting of a flywheel, supercapacitor, and battery. The goal is to smooth out the output power fluctuations by the optimal</p>
<p>size of the HESS. Thus, a 1.5 MW hydraulic wind turbine is simulated, and the HESS is</p>
<p>configured and optimized. The direct connection of the flywheel allows reaching a suitable</p>
<p>level of smoothness at a reasonable cost. The proposed configuration is compared with the</p>
<p>conventional storage, and the results demonstrate that the proposed integrated HESS can</p>
<p>decrease the annualized storage cost by 71 %.</p>
<p>Finally, this research investigates the effects of the reduced-size RSC on the Low Voltage</p>
<p>Ride Through (LVRT) capabilities required from all wind turbines. One of the significant</p>
<p>achievements of an SS-WECS is the reduced size excitation circuit. The grid side converter is</p>
<p>eliminated, and the size of the rotor side converter (RSC) can be safely reduced to a fraction</p>
<p>of a full-size excitation. Therefore, this low-power-rated converter operates at low voltage</p>
<p>and handles the regular operation well. However, the fault conditions may expose conditions</p>
<p>on the converter and push it to its limits. Therefore, four different protection circuits are</p>
<p>employed, and their effects are investigated and compared to evaluate their performance.</p>
<p>These four protection circuits include the active crowbar, active crowbar along a resistorinductor</p>
<p>circuit (C-RL), series dynamic resistor (SDR), and new-bridge fault current limiter</p>
<p>(NBFCL). The wind turbine controllers are also adapted to reduce the impact of the fault</p>
<p>on the power electronic converters. One of the effective methods is to store the excess energy</p>
<p>in the generator’s rotor. Finally, the proposed LVRT strategies are simulated in MATLAB</p>
<p>Simulink to validate the results and demonstrate their effectiveness and functionality.</p>
|
Page generated in 0.1872 seconds