• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Wind penetration level studies on Texas grid stability using synchronized phase measurement

Kim, Joon Hyun 28 October 2010 (has links)
Wind power generation influences on the quality of the power grid. Because wind velocity is consistently changing this change causes unstable wind power generation. Since more wind power is expected to be used in the future, it is crucial to study the influence of the wind penetration level on normalized-damping ratio and damped-resonant frequency. In this thesis three types of calculated data were used to analyze the effect of wind penetration level on the Texas power grid: the percentage of wind power generation in Texas, generator-unit trip damping coefficient, and damped-resonant frequency. The percentage of wind energy was calculated from wind data provided by the Electric Reliability Council of Texas. The damping coefficient and damped-resonant frequency values are the indicators of power system stability and were calculated from synchronized phase data from the Texas power grid. The synchronized phase measurements were collected from the University of Texas at Austin and the wind farm near the Mc-Donald observatory. The data analyzed in this paper were from September 2009 to February 2010. The wind data were correlated to the grid-stability indicators which allowed us to interpret the status of the power grid according to the wind penetration level. When the wind penetration level increased over 11 %, five generator trip events occurred with damping coefficient values ten times higher than those of the regular unit trips. Moreover, during those events, damped-resonant frequency values rose nearly four times higher than the frequency values of other events. The results of this study may lead us to the conclusion that simply increasing the capacity of wind power generation will cause the power system to become unstable, and this will result in low quality of electricity. Therefore, further study is needed to determine the optimum amount of wind power generation without causing instability in the power grid. / text
2

Impacts of environmental regulation and wind penetration level on the ERCOT market

Jin, Joo Hyun 05 March 2013 (has links)
As more renewable resources are added into the grid and environmental regulations are imposed to reduce emissions, there will be dramatic changes in the generation portfolio. Assessing the impact of these changes is important for policy makers, market participants, and general public to understand trends in the electricity market. This paper addresses this issue by analyzing how the ERCOT market is affected by CO2 penalty and wind penetration. In order to assess the future power system, the study model should represent the long term dynamics of various factors to find out how investment decisions are made economically in a competitive market with appropriate assumptions. Another important aspect is the short term market dynamics from real operation of power system. For this study, AURORAxmp, a commercially available market simulator, is utilized to capture both long term and short term dynamics. This study runs 5 different scenarios: two base cases with and without CO2 price, 20%, 27%, and 33% wind penetration level. The result shows that, increasing wind penetration reduces production and capacity of both coal and gas units, electricity market prices, and amount of emissions. However, increasing wind penetration has greater impacts on a decrease in generation from thermal units than reduction in thermal capacity, resulting in 11.4% capacity value of wind power. The study also confirms that CO2 price impacts capacity and generation of coal (negatively) and gas (positively) units in opposite ways, and reduces emission, but increases power prices and generation cost. Especially, the impact on retirement of coal units is noticeable. Almost half of the current coal capacity (19 GW), 9,390 MW, is retired by 2040 in this study. / text
3

Voltage stability limits for weak power systems with high wind penetration

Tamimi, Ala January 1900 (has links)
Doctor of Philosophy / Department of Electrical and Computer Engineering / Anil Pahwa / Shelli K. Starrett / Analysis of power system voltage stability has practical value in increasing wind penetration levels. As wind penetration levels increase in power systems, voltage stability challenges arise due to locating wind resources far away from load centers. This dissertation presents several different voltage stability methods for sizing new wind farms. Power system wind penetration levels depend on the available voltage stability margins (VSMs) of the existing power system and system load characteristics. Three new iterative methods have been developed to maximize wind penetration level in weak power systems based on systems’ VSMs. The first two methods use an iterative approach for increasing the size of each wind farm until reaching the collapse point. Wind farms with less negative impact on system VSMs are sized larger than others. A third wind farm sizing method has been developed using modal analysis in conjunction with the traditional voltage stability method (Q-V method). Wind farms are placed at buses in the power system which have the lowest negative impact on voltage instability modes (strong wind injection buses). By placing the wind farms at the strongest wind injection buses, higher amounts of wind power can be injected into the power system. To further increase wind penetration in weak power systems, two additional techniques are introduced and applied to the western Kansas power system. The first technique uses modes of voltage instability to place voltage support equipment like static var compensators at locations in the power system where they provide the needed reactive power support for increasing levels of wind penetration. The second technique uses the fact that wind patterns at a wind farm site may rarely allow the wind farm to produce its maximum capacity during the peak loading hours. Wind farm maximum sizes can be increased above their maximum voltage stable size limit without driving the power system into becoming voltage unstable. Preventing voltage collapse for the additional increases in wind farm sizes is accomplished by disconnecting some wind turbines inside the wind farm during critical times to reduce its power output to a voltage stable level.
4

Energy Storage System for Wind-Diesel Power System in Remote Locations

Cordeiro, Roberto January 2016 (has links)
The aim of this thesis is to show how much fuel can be saved in a power system based in diesel generators with integrated wind turbine (WDPS – Wind Diesel Power System) when a storage system is integrated. Diesel generator is still the most used power system for remote locations where the conventional grid doesn’t reach and its integration with wind turbine is seen as a natural combination to reduce diesel consumption. However, the wind intermittency brings some challenges that might prevent the necessary diesel savings to the level that justifies the integration with wind turbine. The introduction of a storage system can leverage the wind energy that would otherwise be wasted and use it during periods of high demand.The thesis starts by describing the characteristics of energy storage systems (ESS) and introducing the major ESS technologies: Flywheel, Pumped Hydro, Compressed Air and the four main battery technologies, Lead Acid, Nickel-Based, Lithium-ion and Sodium-Sulphur. The aim of this step it to obtain and compile major ESS parameters to frame then into a chart that will be used as a comparison tool.In the next step, wind-diesel power systems are described and the concept of Wind Penetration is introduced. The ratio between the wind capacity and diesel capacity determines if the wind penetration is low, medium and high and this level has a direct relation to the WDPS complexity. This step also introduces important concepts pertaining to grid load and how they are affected by the wind penetration.Next step shows the development of models for low, medium and high penetration WDPS with and without integrated ESS. Simulations are executed based on these models in order to determine the diesel consumption for each of them. The simulations are done by using reMIND tool.The final step is a comparative study where the most appropriated ESS technology is chosen based on adequacy to the system, system size and location. Once the technology is chosen, the ESS economic viability is determine based on the diesel savings obtained in the previous step.Since this is a general demonstration, no specific data about wind variation and consumer demand was used. The wind variation, which is used as the input for the wind turbine (WT), was obtained from a typical Weibull Distribution which is the kind of distribution that most approximate a wind pattern for long term data collection. The wind variation over time was then randomly generated from this distribution. The consumer load variation is based on a typical residential load curves. Although the load curve was generated randomly, its shape was maintained in conformity with the typical curves.This thesis has demonstrated that ESS integrated to WDPS can actually bring a reasonable reduction in diesel utilization. Even with a wind pattern with a low mean speed (5.31 m/s), the savings obtained was around of 17%.Among all ESS technologies studied, only Battery Energy Storage System (BESS) showed to be a viable technology for a small capacity WDPS. Among the four BESS technologies studied, Lead-Acid presents the highest diesel savings with the lower initial investment and shorter payback time. / O objetivo dessa tese é determinar quanto combustível pode ser economizado quando se integra um sistema de armazenamento de energia (ESS na sigla em Inglês) a um sistema gerador baseado em gerador diesel integrado com turbina eólica (WDPS na sigla em Inglês). Geradores à diesel são largamente utilizados em áreas remotas onde a rede de distribuição de eletricidade não chega, e a integração de geradores à diesel com turbinas eólicas se tornou a combinação usual visando a economia de combustível. No entanto, a intermitência do vento cria alguns desafios que podem inclusive tornar essa integração inviável economicamente. A introdução de ESS à esse sistema visa o aproveitamento da energia que seria desperdiçada para usá-la em periodos de alta demanda.A tese começa descrevendo as características de ESS e suas principais tecnologias: Flyweel, hidroelétrica de bombeamento, ar-comprimido e as quatro principais tecnologias de bateria, Chumbo-Ácido, Níquel, Íon de Lítio e Sódio-Sulfúrico. O objetivo dessa etapa é obter os principais parâmetros de ESS e apresentá-los numa planilha para referência futura.Na etapa seguinte, geradores à diesel são descritos e é introduzido o conceito de Penetração do Vento. A razão entre a capacidade eólica e a capacidade do gerador diesel determina se a penetração é baixa, média ou alta, e esse nível tem uma relação direta com a complexidade do WDPS. Nessa etapa também são introduzidos importantes conceitos sobre demanda numa rede de distribuição de eletricidade e como esta é afetada pela penetração do vento.A etapa seguinte apresenta a modelagem de WDPS com baixa, média e alta penetração, incluindo a integração com ESS. Sobre esses modelos são então executadas simulações buscando determinar o consumo de diesel de cada um. As simulações são feitas usando a ferramenta reMIND.A última etapa é um estudo comparativo para determinar qual tecnologia de ESS é a mais apropriada para WDPS, levando-se em conta sua localização geográfica e capacidade. Uma vez que a escolha tenha sido feita, a viabilidade econômica do ESS é calculada baseado na ecomonia de combustível obtida na etepa anterior.Como esta tese apresenta uma demonstração, não foram utilizados dados reais de variação do vento nem de consumo. A variação do vento foi obtida de uma distribuição Weibull típica, que é a distribuição que mais se aproxima da característica do vento coletada em logo prazo. A variação do vento no tempo foi gerada aleatoriamente baseada nessa distribuição. A curva de consumo é baseada em curvas de consumo residenciais típicas. Embora a curva de consumo tenha sido gerada aleatoriamente, o seu formato foi mantido em conformidade com as curvas típicas.Essa tese demonstrou que ESS integrado à WDPS pode trazer uma economia razoável. Mesmo usando uma distribuição de vento com baixo valor médio (5.3 m/s), a economia obtida foi de 17%.Dentre as tecnologias de ESS pesquisadas, apenas o sistema de armazenamento com bateria (BESS na sigla em Inglês) se mostrou viável para um WDPS com pequena capacidade. Dentre as quatro tecnologias de BESS pesquisadas, Chumbo-Ácido foi a que apresentou a maior economia de diesel com o menor investimento inicial e com o menor tempo de retorno do investimento.

Page generated in 0.1035 seconds