• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Building integrated wind energy

Wang, Jialin January 2013 (has links)
In considering methods of reducing the emission of carbon dioxide; there is a growing interest for use of wind power at domestic building in U.K. But the technology of wind turbines development in building environment is more complicated than in open areas. Small wind turbines in suburban areas have been reported as having unsatisfactory energy output, but it is not clear whether this is due to insufficient wind resource or low turbine efficiency. The aim of this research is to discover whether the wind resource in suburban areas is large enough for small wind turbines to produce a useful energy output.Historical wind data and manufacturers' turbine characteristics were used to estimate the hourly wind speed and energy output for different U.K. cities, terrain zones and turbines. It was found that for turbines at 10 m height in suburban areas and depending on city, the annual wind energy conversion efficiency ranged from about 20 to 40%, while the number of turbines required to produce the annual average electricity consumption of a UK dwelling ranged from about 6 for the smallest turbine (5.3 m² rotor area) to about 1 for the largest (35.26 m² rotor area).This analysis was based on average conditions, but the wind speed near buildings can vary considerably from one point to another. In order to predict the performance of wind turbines more accurately, the atmospheric boundary layer (ABL) of suburban areas was simulated in both CFD and wind tunnel models, and models of groups of semi-detached and terraced houses were set in this ABL. It was found that at 10 m height in the area of the houses, the turbulence intensity was too high for satisfactory operation of wind turbines (19 to 35%) while the mean velocity at different points ranged from 86 to 108% of the 10m reference velocity. At 30m height the turbulence intensity was satisfactory (less than 19 %), while the mean velocity ranged from 92 to 103 % of the 30 m reference velocity. It is concluded that for wind turbines in suburban areas, at 10 m height the wind speed is too low and the turbulence is too high for satisfactory performance, while at 30 m height the wind speed is much higher and the turbulence is low enough.
2

Coupled computational fluid dynamics/multibody dynamics method with application to wind turbine simulations

Li, Yuwei 01 May 2014 (has links)
A high fidelity approach coupling the computational fluid dynamics method (CFD) and multi-body dynamics method (MBD) is presented for aero-servo-elastic wind turbine simulations. The approach uses the incompressible CFD dynamic overset code CFDShip-Iowa v4.5 to compute the aerodynamics, coupled with the MBD code Virtual.Lab Motion to predict the motion responses to the aerodynamic loads. The IEC 61400-1 ed. 3 recommended Mann wind turbulence model was implemented in this thesis into the code CFDShip-Iowa v4.5 as boundary and initial conditions, and used as the explicit wind turbulence for CFD simulations. A drivetrain model with control systems was implemented in the CFD/MBD framework for investigation of drivetrain dynamics. The tool and methodology developed in this thesis are unique, being the first time with complete wind turbine simulations including CFD of the rotor/tower aerodynamics, elastic blades, gearbox dynamics and feedback control systems in turbulent winds. Dynamic overset CFD simulations were performed with the benchmark experiment UAE phase VI to demonstrate capabilities of the code for wind turbine aerodynamics. The complete turbine geometry was modeled, including blades and approximate geometries for hub, nacelle and tower. Unsteady Reynolds-Averaged Navier-Stokes (URANS) and Detached Eddy Simulation (DES) turbulence models were used in the simulations. Results for both variable wind speed at constant blade pitch angle and variable blade pitch angle at fixed wind speed show that the CFD predictions match the experimental data consistently well, including the general trends for power and thrust, sectional normal force coefficients and pressure coefficients at different sections along the blade. The implemented Mann wind turbulence model was validated both theoretically and statistically by comparing the generated stationary wind turbulent field with the theoretical one-point spectrum for the three components of the velocity fluctuations, and by comparing the expected statistics from the simulated turbulent field by CFD with the explicit wind turbulence inlet boundary from the Mann model. The proposed coupled CFD/MBD approach was applied to the conceptual NREL 5MW offshore wind turbine. Extensive simulations were performed in an increasing level of complexity to investigate the aerodynamic predictions, turbine performance, elastic blades, wind shear and atmospheric wind turbulence. Comparisons against the publicly available OC3 simulation results show good agreements between the CFD/MBD approach and the OC3 participants in time and frequency domains. Wind turbulence/turbine interaction was examined for the wake flow to analyze the influence of turbulent wind on wake diffusion. The Gearbox Reliability Collaborative project gearbox was up-scaled in size and added to the NREL 5MW turbine with the purpose of demonstrating drivetrain dynamics. Generator torque and blade pitch controllers were implemented to simulate realistic operational conditions of commercial wind turbines. Interactions between wind turbulence, rotor aerodynamics, elastic blades, drivetrain dynamics at the gear-level and servo-control dynamics were studied, showing the potential of the methodology to study complex aerodynamic/mechanic systems.

Page generated in 0.1031 seconds