• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estimation of wind energy near the earth's surface

Bootman, Steven Randall January 2011 (has links)
Typescript. / Digitized by Kansas Correctional Industries
2

Characterizing Tilt Effects on Wind Plants

Scott, Ryan 14 June 2019 (has links)
Tilting the nacelle of a wind turbine modifies entrainment into the wind plant and impacts total efficiency. Extreme angles can produce flying and crashing wakes where the wake either disrupts entertainment from the undisturbed flow above or is decimated on the ground. The effect of tilt angle on downstream wake behavior was investigated in a series of wind tunnel experiments. Scale model turbines with a hub height and diameter of 12 cm were arranged in a Cartesian array comprised of four rows of three turbines each. Nacelle tilt was varied in the third row from -15° to 15° in chosen 5° increments. Stereo PIV measurements of the instantaneous velocity field were recorded at four locations for each angle. Tilted wakes are described in terms of the average streamwise velocity field, wall-normal velocity field, Reynolds stresses, and mean vertical transport of kinetic energy. Conditional sampling is used to quantify the importance of sweep vs. ejection events and thus downwards vs. upwards momentum transfer. Additionally, wake center displacement and changes in net power are presented and compared to existing models. The results demonstrate large variations in wake velocity and vertical displacement with enhanced vertical energy and momentum transfer for negative tilt angles. Simulation models accurately predict wake deflection while analytic models deviate considerably highlighting the difficulties in describing tilt phenomena. Negative angles successfully produce crashing wakes and improve the availability of kinetic energy thereby improving the power output of the wind plant.
3

Identification of Markov Processes within a Wind Turbine Array Boundary Layer

Melius, Matthew Scott 23 August 2013 (has links)
The Markovianity within a wind turbine array boundary layer is explored for data taken in a wind tunnel containing a model wind turbine array. A stochastic analysis of the data is carried out using Markov chain theory. The data were obtained via hot-wire anemometry thus providing point velocity statistics. The theory of Markovian processes is applied to obtain a statistical description of longitudinal velocity increments inside the turbine wake using conditional probability density functions. It is found that two and three point conditional probability density functions are similar for scale differences larger than the Taylor micro-scale. This result is quantified by use of the Wilcoxon rank-sum test which verifies that this relationship holds independent of initial scale selection outside of the near-wake region behind a wind turbine. Furthermore, at the locations which demonstrate Markovian properties there is a well defined inertial sub-range which follows Kolmogorv's -5/3 scaling behavior. Results indicate an existence of Markovian properties at scales on the order of the Taylor micro-scale, λ for most locations in the wake. The exception being directly behind the tips of the rotor and the hub where the complex turbulent interactions characteristic of the near-wake demonstrate influence upon the Markov process. The presence of a Markov process in the remaining locations leads to characterization of the multi-point statistics of the wind turbine wakes using the most recent states of the flow.
4

Modeling and control of hydraulic wind power transfer systems

Vaezi, Masoud January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Hydraulic wind power transfer systems deliver the captured energy by the blades to the generators differently. In the conventional systems this task is carried out by a gearbox or an intermediate medium. New generation of wind power systems transfer the captured energy by means of high-pressure hydraulic fluids. A hydraulic pump is connected to the blades shaft at a high distance from the ground, in nacelle, to pressurize a hydraulic flow down to ground level equipment through hoses. Multiple wind turbines can also pressurize a flow sending to a single hose toward the generator. The pressurized flow carries a large amount of energy which will be transferred to the mechanical energy by a hydraulic motor. Finally, a generator is connected to the hydraulic motor to generate electrical power. This hydraulic system runs under two main disturbances, wind speed fluctuations and load variations. Intermittent nature of the wind applies a fluctuating torque on the hydraulic pump shaft. Also, variations of the consumed electrical power by the grid cause a considerable load disturbance on the system. This thesis studies the hydraulic wind power transfer systems. To get a better understanding, a mathematical model of the system is developed and studied utilizing the governing equations for every single hydraulic component in the system. The mathematical model embodies nonlinearities which are inherited from the hydraulic components such as check valves, proportional valves, pressure relief valves, etc. An experimental prototype of the hydraulic wind power transfer systems is designed and implemented to study the dynamic behavior and operation of the system. The provided nonlinear mathematical model is then validated by experimental result from the prototype. Moreover, this thesis develops a control system for the hydraulic wind power transfer systems. To maintain a fixed frequency electrical voltage by the system, the generator should remain at a constant rotational speed. The fluctuating wind speed from the upstream, and the load variations from the downstream apply considerable disturbances on the system. A controller is designed and implemented to regulate the flow in the proportional valve and as a consequence the generator maintains its constant speed compensating for load and wind turbine disturbances. The control system is applied to the mathematical model as well as the experimental prototype by utilizing MATLAB/Simulink and dSPACE 1104 fast prototyping hardware and the results are compared.

Page generated in 0.0877 seconds