Spelling suggestions: "subject:"find turbine makes"" "subject:"find turbine takes""
1 |
Numerical study on instability and interaction of wind turbine wakesSarmast, Sasan January 2014 (has links)
Numerical simulations of the Navier-Stokes equations are conducted to achieve a better understanding of the behavior of wakes generated by the wind turbines. The simulations are performed by combining the in-house developed code EllipSys3D with the actuator line technique. In step one of the project, a numerical study is carried out focusing on the instability onset of the trailing tip vortices shed from a 3-bladed wind turbine. To determine the critical frequency, the wake is perturbed using low-amplitude excitations located near the tip spirals. Two basic flow cases are studied; symmetric and asymmetric setups. In the symmetric setup a 120 degree flow symmetry condition is dictated due to the confining the polar computational grid to 120 degree or introducing identical excitations. In the asymmetric setup, uncorrelated excitations are imposed near the tip of the blades. Both setups are analyzed using proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD). By analysing the dominant modes, it was found that in the symmetric setup the amplification of specific waves (traveling structures) traveling along the tip vortex spirals is responsible for triggering the instability leading to wake breakdown, while by breaking the symmetry almost all the modes are involved in the tip vortex destabilization. The presence of unstable modes in the wake is related to the mutual inductance (vortex pairing) instability where there is an out-of-phase displacement of successive helix turns. Furthermore, using the non-dimensional growth rate, it is found that the mutual inductance instability has a universal growth rate equal to Π/2. Using this relationship, and the assumption that breakdown to turbulence occurs once a vortex has experienced sufficient growth, an analytical relationship is provided for determining the length of the stable wake. This expression shows that the stable wake length is inversely proportional to thrust, tip speed ratio and the logarithmic of the turbulence intensity. In second study, large eddy simulations of the Navier-Stokes equations are also performed to investigate the wake interaction. Previous actuator line simulations on the single model wind turbine show that the accuracy of the results is directly related to the quality of the input airfoil characteristics. Therefore, a series of experiments on a 2D wing are conducted to obtain high quality airfoil characteristics for the NREL S826 at low Reynolds numbers. The new measured data are used to compute the rotor performance. The results show that the power performance as well as the wake development behind the rotor are well-captured. There are, however, some difficulties in prediction of the thrust coefficients. The continuation of this work considers the wake interaction investigations of two turbines inline (full-wake interaction) and two turbines with spanwise offset (half wake interaction). It is demonstrated that the numerical computations are able to predict the rotor performances as well as the flow field around the model rotors, and it can be a suitable tool for investigation of the wind turbine wakes. In the last study, an evaluation of the performance and near-wake structure of an analytical vortex model is presented. The vortex model is based on the constant circulation along the blades (Joukowsky rotor) and it is able to determine the geometry of the tip vortex filament in the rotor wake, allowing the free wake expansion and changing the local tip vortex pitch. Two different wind turbines have been simulated: a wind turbine with constant circulation along the blade and the other setup with a realistic circulation distribution, to compare the outcomes of the vortex model with real operative wind turbine conditions. The vortex model is compared with the actuator line approach and the presented comparisons show that the vortex method is able to approximate the single rotor performance and qualitatively describe the flow field around the wind turbine but with a negligible computational effort. This suggests that the vortex model can be a substitute of more computationally-demanding methods like actuator line technique to study the near-wake behavior. / <p>QC 20141010</p>
|
2 |
Modelling of wind turbine wakes in complex terrain using computational fluid dynamicsMakridis, Alexandros January 2012 (has links)
This thesis focuses on modelling of wind turbine wakes when they are affected by real complex terrain features, such as hills and forests, and also examines the effect of the rotational momentum imparted to the downstream wake from the rotor blades. Modelling work is carried out using the commercial Computational Fluid Dynamics (CFD) solver FLUENT. Motivation for this project was the fact that there is currently limited knowledge on several issues that affect the operation of a wind farm in a complex terrain environment. Wind developers normally use commercial, easy-to-use software (such as WAsP) to predict the potential wind farm output , which are based on simple linear models to model wakes and wind flow orographic effects and have been calibrated for cases of simple terrain. In cases of complex terrain, they are expected to give errors due to arising non-linearities. After a review of the relevant literature, the chosen CFD procedure is explained. This involves the use of 3-D Reynolds Averaged Navier-Stokes equations using the Reynolds Stress Model for the turbulence closure, in order to account for the anisotropy in atmospheric turbulence. The Virtual Blade Model in FLUENT is demonstrated as a useful tool for modelling the rotor effects without the need of meshing the rotor geometry in detail and avoiding significant computational cost. The approach is initially validated with the widely documented Nibe measurements, which involved full-scale observations of a single wake over at terrain. The model is also tested in the case of a wind turbine operating at the summit of an ideal, Gaussian hill. The wake development is examined in detail and in comparison with another CFD approach. Most notably, a slight divergence is found in the wake path as it evolves downwind. Additionally, the proposed approaches of modelling the neutral atmospheric ow over a real hill and over a forest are validated with full-scale measurements. Ultimately, the work includes the modelling of real wind farms over complex terrain and validating the results with measurements. A coastal complex terrain wind farm is initially examined and results are validated with SCADA measurements and compared with results using the WAsP wind modelling software. Finally, a wind farm over hilly terrain and near forests is also considered and the effect of the forest in the wake is studied. Results are also validated with full-scale measurements.
|
3 |
Influência da turbulência atmosférica na esteira aerodinâmica de turbinas eólicas : estudo experimental em túnel de ventoZúñiga Inestroza, Manuel Alejandro January 2017 (has links)
Aerogeradores, ou turbinas eólicas, são máquinas instaladas em grandes parques eólicos que convertem a energia cinética do vento em energia elétrica. A definição da separação e da interação entre máquinas é um fator fundamental de análise durante a fase de projeto, pois os chamados efeitos de esteira podem inviabilizar o desenvolvimento de um parque eólico. Em geral, a esteira de um aerogerador está caracterizada por um significativo déficit de velocidade e uma intensificação dos níveis de turbulência, o que ocasiona a diminuição da eficiência aerodinâmica e a redução da vida útil das máquinas localizadas a sotavento. Embora existam diferentes pesquisas destinadas à compreensão e previsão dos efeitos de esteira, o problema permanece como uma questão desafiadora que exige a adoção de ferramentas de alta precisão para sua identificação. Este trabalho apresenta uma metodologia experimental em túnel de vento, para a caracterização e avaliação do campo de escoamento na esteira aerodinâmica de um modelo reduzido, sob diferentes condições de escoamento incidente. Especificamente, investiga-se a influência da turbulência atmosférica para quatro perfis de escoamento: i) uniforme-suave; ii) uniforme-turbulento; iii) lei potencial com expoente α = 0,11; iv) lei potencial com expoente α = 0,23. Todos os casos foram conduzidos sob condições de estratificação neutra, e foi utilizado anemômetro de fio-quente para efetivar as medições dos perfis de velocidade média e intensidade da turbulência, em diferentes posições da esteira. Os resultados mostraram diferenças substanciais no comportamento dos perfis de esteira, em função dos níveis de turbulência incidente. Particularmente, observou-se que o incremento da turbulência atmosférica reduz o déficit de velocidade e promove uma maior mistura turbulenta, o que acelera a dissipação dos efeitos de esteira. Assim, a metodologia experimental em túnel de vento evidencia-se como uma importante ferramenta de análise que possibilita amplo espectro para a investigação, precisão e confiabilidade de projetos eólicos. / Wind turbines are machines installed in large wind farms to convert the wind's kinetic energy into electrical power. For an optimal wind farm siting, it is necessary to take into account the interaction between wind turbine wakes. In general, wake effects are associated with velocity deficit and enhanced turbulence intensity. This may reduce the aerodynamic efficiency and lifetime of downwind turbines, making the project unfeasible. Several experimental and numerical studies have been conducted to unravel the behavior of wind turbine wakes under different inflow conditions. However, current wind farm siting tools are incapable of accurately predicting and assessing its effects. This document presents an experimental methodology in the wind tunnel to survey the influence of the atmospheric turbulence on the wake flow field of a wind turbine model. Specifically, four different flow conditions were investigated: i) uniform-laminar; ii) uniform-turbulent; iii) power law exponent α = 0.11; iv) power law exponent α = 0.23. All cases were developed under neutrally stratified conditions. Hot-wire anemometry was used to obtain high-resolution measurements of the mean velocity and turbulence intensity profiles at different downwind positions. Results show that different turbulence intensity levels of the incoming flow lead to substantial differences in the spatial distribution of the wakes. Particularly, higher ambient turbulence promotes a faster wake recovery and lower velocity deficit. In conclusion, the use of wind tunnel experiments is a trustworthy alternative that brings precision and reliability to wind projects.
|
4 |
Influência da turbulência atmosférica na esteira aerodinâmica de turbinas eólicas : estudo experimental em túnel de ventoZúñiga Inestroza, Manuel Alejandro January 2017 (has links)
Aerogeradores, ou turbinas eólicas, são máquinas instaladas em grandes parques eólicos que convertem a energia cinética do vento em energia elétrica. A definição da separação e da interação entre máquinas é um fator fundamental de análise durante a fase de projeto, pois os chamados efeitos de esteira podem inviabilizar o desenvolvimento de um parque eólico. Em geral, a esteira de um aerogerador está caracterizada por um significativo déficit de velocidade e uma intensificação dos níveis de turbulência, o que ocasiona a diminuição da eficiência aerodinâmica e a redução da vida útil das máquinas localizadas a sotavento. Embora existam diferentes pesquisas destinadas à compreensão e previsão dos efeitos de esteira, o problema permanece como uma questão desafiadora que exige a adoção de ferramentas de alta precisão para sua identificação. Este trabalho apresenta uma metodologia experimental em túnel de vento, para a caracterização e avaliação do campo de escoamento na esteira aerodinâmica de um modelo reduzido, sob diferentes condições de escoamento incidente. Especificamente, investiga-se a influência da turbulência atmosférica para quatro perfis de escoamento: i) uniforme-suave; ii) uniforme-turbulento; iii) lei potencial com expoente α = 0,11; iv) lei potencial com expoente α = 0,23. Todos os casos foram conduzidos sob condições de estratificação neutra, e foi utilizado anemômetro de fio-quente para efetivar as medições dos perfis de velocidade média e intensidade da turbulência, em diferentes posições da esteira. Os resultados mostraram diferenças substanciais no comportamento dos perfis de esteira, em função dos níveis de turbulência incidente. Particularmente, observou-se que o incremento da turbulência atmosférica reduz o déficit de velocidade e promove uma maior mistura turbulenta, o que acelera a dissipação dos efeitos de esteira. Assim, a metodologia experimental em túnel de vento evidencia-se como uma importante ferramenta de análise que possibilita amplo espectro para a investigação, precisão e confiabilidade de projetos eólicos. / Wind turbines are machines installed in large wind farms to convert the wind's kinetic energy into electrical power. For an optimal wind farm siting, it is necessary to take into account the interaction between wind turbine wakes. In general, wake effects are associated with velocity deficit and enhanced turbulence intensity. This may reduce the aerodynamic efficiency and lifetime of downwind turbines, making the project unfeasible. Several experimental and numerical studies have been conducted to unravel the behavior of wind turbine wakes under different inflow conditions. However, current wind farm siting tools are incapable of accurately predicting and assessing its effects. This document presents an experimental methodology in the wind tunnel to survey the influence of the atmospheric turbulence on the wake flow field of a wind turbine model. Specifically, four different flow conditions were investigated: i) uniform-laminar; ii) uniform-turbulent; iii) power law exponent α = 0.11; iv) power law exponent α = 0.23. All cases were developed under neutrally stratified conditions. Hot-wire anemometry was used to obtain high-resolution measurements of the mean velocity and turbulence intensity profiles at different downwind positions. Results show that different turbulence intensity levels of the incoming flow lead to substantial differences in the spatial distribution of the wakes. Particularly, higher ambient turbulence promotes a faster wake recovery and lower velocity deficit. In conclusion, the use of wind tunnel experiments is a trustworthy alternative that brings precision and reliability to wind projects.
|
5 |
Influência da turbulência atmosférica na esteira aerodinâmica de turbinas eólicas : estudo experimental em túnel de ventoZúñiga Inestroza, Manuel Alejandro January 2017 (has links)
Aerogeradores, ou turbinas eólicas, são máquinas instaladas em grandes parques eólicos que convertem a energia cinética do vento em energia elétrica. A definição da separação e da interação entre máquinas é um fator fundamental de análise durante a fase de projeto, pois os chamados efeitos de esteira podem inviabilizar o desenvolvimento de um parque eólico. Em geral, a esteira de um aerogerador está caracterizada por um significativo déficit de velocidade e uma intensificação dos níveis de turbulência, o que ocasiona a diminuição da eficiência aerodinâmica e a redução da vida útil das máquinas localizadas a sotavento. Embora existam diferentes pesquisas destinadas à compreensão e previsão dos efeitos de esteira, o problema permanece como uma questão desafiadora que exige a adoção de ferramentas de alta precisão para sua identificação. Este trabalho apresenta uma metodologia experimental em túnel de vento, para a caracterização e avaliação do campo de escoamento na esteira aerodinâmica de um modelo reduzido, sob diferentes condições de escoamento incidente. Especificamente, investiga-se a influência da turbulência atmosférica para quatro perfis de escoamento: i) uniforme-suave; ii) uniforme-turbulento; iii) lei potencial com expoente α = 0,11; iv) lei potencial com expoente α = 0,23. Todos os casos foram conduzidos sob condições de estratificação neutra, e foi utilizado anemômetro de fio-quente para efetivar as medições dos perfis de velocidade média e intensidade da turbulência, em diferentes posições da esteira. Os resultados mostraram diferenças substanciais no comportamento dos perfis de esteira, em função dos níveis de turbulência incidente. Particularmente, observou-se que o incremento da turbulência atmosférica reduz o déficit de velocidade e promove uma maior mistura turbulenta, o que acelera a dissipação dos efeitos de esteira. Assim, a metodologia experimental em túnel de vento evidencia-se como uma importante ferramenta de análise que possibilita amplo espectro para a investigação, precisão e confiabilidade de projetos eólicos. / Wind turbines are machines installed in large wind farms to convert the wind's kinetic energy into electrical power. For an optimal wind farm siting, it is necessary to take into account the interaction between wind turbine wakes. In general, wake effects are associated with velocity deficit and enhanced turbulence intensity. This may reduce the aerodynamic efficiency and lifetime of downwind turbines, making the project unfeasible. Several experimental and numerical studies have been conducted to unravel the behavior of wind turbine wakes under different inflow conditions. However, current wind farm siting tools are incapable of accurately predicting and assessing its effects. This document presents an experimental methodology in the wind tunnel to survey the influence of the atmospheric turbulence on the wake flow field of a wind turbine model. Specifically, four different flow conditions were investigated: i) uniform-laminar; ii) uniform-turbulent; iii) power law exponent α = 0.11; iv) power law exponent α = 0.23. All cases were developed under neutrally stratified conditions. Hot-wire anemometry was used to obtain high-resolution measurements of the mean velocity and turbulence intensity profiles at different downwind positions. Results show that different turbulence intensity levels of the incoming flow lead to substantial differences in the spatial distribution of the wakes. Particularly, higher ambient turbulence promotes a faster wake recovery and lower velocity deficit. In conclusion, the use of wind tunnel experiments is a trustworthy alternative that brings precision and reliability to wind projects.
|
6 |
EFFECTS OF INLET CONDITIONS, TURBINE DESIGN, AND NON-FLAT TOPOGRAPHY ON THE WAKE OF SCALED-DOWN WIND TURBINESDiego Andres Siguenza Alvarado (16507221) 07 July 2023 (has links)
<p>This work is a five-article-based collection of published and to-be-published research articles that explore a novel combination of inlet conditions, wind turbine design, and non-flat topography by performing scaled-down experiments in a wind tunnel.</p>
|
Page generated in 0.0746 seconds