• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A NUMERICAL AND EXPERIMENTAL STUDY OF WINDBACK SEALS

Lim, Chae H. 16 January 2010 (has links)
Windback seals work similarly to labyrinth seals except for the effect of helical groove. These seals are essentially a tooth on stator or tooth on rotor labyrinth seal where the grooves are a continuous helical cut like a thread. Windback seals are used in centrifugal gas compressor to keep oil out of the gas face seal area. These face seals cannot be contaminated by oil. A purge gas is applied to the seal to help force the oil back into the bearing area. The windback seal should be designed to prevent any oil contamination into the supply plenum and to reduce purge gas leakage. The CFD simulations have been performed with the effect of clearance, tooth width, cavity shape, shaft rotation, eccentricity, and tooth location on the seal leakage performance and the flow field inside the seal. The leakage flow rate increases with increasing the pressure differential, rotor speed, radial clearance, cavity size, and shaft diameter and with decreasing the tooth width. The eccentricity has a minimal effect for the windback seal. From oil simulations, the windback seal with 25% rotor eccentricity has some of the journal bearing action and drives back flow into the gas plenum. However the windback seal can be used to force the oil back into the bearing side before starting the compressor by applying a purge gas flow since the positive axial velocity inside the cavity is larger than the negative axial velocity. m A Rw cav & / ? is constant for varying shaft rotation since the leakage flow rate for the windback seal increases linearly as the the rotor speed increases. The leakage flow rate for the windback seal increases as the groove size increases due to the pumping action of the windback seal. A windback seal design based upon the numerical simulations that minimize gas leakage and help prevent gas face seal oil contamination was optimized. The windback seal has two leakage flow paths. Since the leakage flow rate under teeth of windback seals is the same as for a similar geometry labyrinth seal, the flow under the teeth can be predicted by two-dimensional labyrinth seal analysis. An empirical model for the leakage rate through the cavity has been developed which fits the data with a standard deviation of 0.12.
2

Windback seal design for gas compressors: a numerical and experimental study

Al-Ghasem, Adnan Mahmoud 17 September 2007 (has links)
Seals are considered one of the important flow elements of a turbomachinery device. Traditional labyrinth seals have proven their performance functionality by reducing leakage rates. Significant improvements on labyrinth seal functionality were obtained through altering the design geometry of labyrinth seals to prevent contamination across a seal and maintaining small leakage flowrates. This results in a windback seal that has only one tooth which continuously winds around the shaft like a screw thread. These seals are used in gas compressors to isolate the gas face seal from bearing oil. A purge gas is passed through the seal into the bearing housing. The helical design allows the seal to clear itself of any oil contamination. Windback seal performance is controlled through changing the seal geometry. A 2D graphical design tool for calculating the total and cavity leakage flowrates for windback seals is introduced. The effectiveness of the Fluent CFD (Computational Fluid Dynamics) commercial code to accurately predict the leakage rate for windback seals was evaluated. The objective is to determine if CFD simulations can be used along with a few experimental tests to study windback seals of this design with air as the working fluid. Comparison of measurement and predictions for a windback seal using the κ-ε turbulence model with enhanced wall treatment functions show predictions and measurements comparing very well with a maximum difference of 5% for leakage rate. Similarly, the leakage rate of the tested smooth seal compares favorably with two dimensional CFD predictions, with a difference of 2%-11% and 8%-15% using laminar and κ-ε turbulent flow models, respectively. The variation of leakage with shaft speed and pressure ratio across the seals is accurately predicted by the CFD simulations. Increasing the rotor speed to 15000 rpm increases the measured leakage flowrate for the windback seal by 2% at high differential pressure and 4.5% at low differential pressure, and decreases it by 10 % for the smooth seal. The effects of seal clearance, tooth pitch, cavity depth and the tooth number of starts on leakage flowrate, velocity and pressure distributions were studied numerically for three differential pressures and four rotor speeds.

Page generated in 0.0517 seconds