• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Non-saccharomyces yeast and acetic acid bacteria in balsamic-styled vinegar production : a biochemical process analysis

Hutchinson, Ucrecia Faith January 2016 (has links)
Thesis (MTech (Chemical Engineering))--Cape Peninsula University of Technology, 2016. / Grape producers and wine makers in South Africa are currently affected by various challenges, which include anti-alcohol lobbies, climate change, over-production in some vintages and the lack of transformation including empowerment in certain sectors of the industry. Climate change and global warming lead to poor quality wine grapes and as a result, poor quality wine. Therefore, there is a need to channel grapes away from normal wine production and provide an alternative source of income for the industry. The overall aim of this study was therefore to provide an alternative outlet for overproduced wine grapes by producing balsamic-styled vinegar (BSV) in South Africa. Balsamic vinegar is different from other vinegars because it is a direct product of grape must and not a downstream or by-product of wine production. Balsamic vinegar entails lower production costs when compared to the production of wine due to the low technological process requirements during production; therefore, this could be an opportunity for small business entrepreneurs with low capital start-up. In addition, balsamic vinegar can command a high price, which is a benefit for grape producers. The primary aim of this investigation was to biochemically analyse a BSV production process in which 5 non-Saccharomyces yeast and 15 acetic acid bacteria (AAB) were used for a multicultural alcoholic-acetous (EtOH-AcOH) fermentation process. To achieve this aim, a fermentation process was designed where the data generated was fitted into kinetic models and the proliferation including the population dynamics of the microbial consortia were studied.
2

The use of winery waste compost to establish cabbage (Brassica oleracea var. capitata L.) and Swiss chard (Beta vulgaris subsp. cycla) on sandy soil at Bien Donné experimental farm near Paarl in the Western Cape region

Ndololwana, Ncedo Goodwill January 2015 (has links)
Thesis (MTech (Agriculture))--Cape Peninsula University of Technology, 2015. / A study was carried out at Bien Donné Experimental Farm, near Paarl in the Western Cape Region (South Africa), to evaluate the performance of solid winery waste compost (WWC) and inorganic fertilizer (N:P:K, 2:3:4 (30) - 5g Zn%) on growth and yield of cabbage (Brassica oleracea var. capitata L.) and Swiss chard (Beta vulgaris subsp. cycla). The experimental plot was fertilized as per treatment with WWC (100% and 400% equivalent recommended fertilizer application using N as reference mineral) and inorganic fertilizer. The experimental design was set up in a Randomized Complete Block Design (RCBD) with 4 treatments (control- without compost and inorganic fertilizers, inorganic fertilizer-2:3:4 (30) - 5g Zn% and LAN (28), WWC application at different application rates were (3485g/plot) (100%) and (13939g/plot) (400%)) replicated four times. Soil analysis showed that the experimental plot is dominated by sandy soil structure. Results of mineral analysis after application of treatments showed a significant (p>0.05) drop in soil pH over time in the untreated control and application of 400% WWC significantly (p<0.05) raised soil pH compared with the control. The application of mineral fertilizer showed significant (p<0.05) increase in soil P compared with the other treatments. However, WWC picked up significant (p<0.05) speed above inorganic fertilizer, thus making P available to the soil than NPK mineral fertilizer. A significant (p<0.05) drop in soil K content by 21% over time on amended soil with inorganic fertilizer treatment was observed. However, the application of WWC at 300 and 400% significantly (p<0.05) raised the soil K by 54.93 and 73.06% respectively. There were no significant differences in soil Ca over time, but high soil Ca concentrations from WWC (100%) were recorded compared to inorganic treatment that showed the lowest soil Ca concentration. There was a slight drop in soil Na over time in control and soil amended with inorganic fertilizer. The effects of the treatment on Mg values were not so prominent, suggesting that concentrations of nutrients are less essential characteristics of the soil or small portion of nutrients were readily available on the soil.

Page generated in 0.0963 seconds