• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Performance of a bidirectional horizontal-axis tidal turbine with passive flow control devices

Zhang, J., Liu, S., Guo, Yakun, Sun, K., Guan, D. 24 May 2022 (has links)
No / Horizontal-axis tidal turbines (HATTs) have the acknowledged potential to extract a large amount of green renewable energy from ocean tides. Among these, bidirectional HATTs (BHATTs) with centrosymmetric hydrofoils have advantages in terms of reliability and maintenance cost. To improve the performance of BHATTs, this paper investigates the influence of different passive flow control devices (PFCDs), such as wing fences, winglets, and squealers, on the performance of the BHATT. To the end, a three-dimensional (3D) numerical model with a k-ω SST model and a sliding mesh method was applied to simulate a 18 m diameter BHATT. The numerical framework was validated using two experiments. The mesh convergence was tested. The results show that the wing fences can effectively suppress the spanwise flow above the suction surface of blades, although they cannot improve the BHATT performance. To inhibit the wingtip vortices and enhance the torque of the rotor, a series of centrosymmetric winglets are designed and optimized. The optimal BHATT can produce up to 2.3% more energy at design tip speed ratio (TSR).

Page generated in 0.0611 seconds