• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 160
  • 44
  • 25
  • 11
  • 10
  • 6
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 347
  • 347
  • 80
  • 78
  • 78
  • 61
  • 55
  • 45
  • 43
  • 42
  • 37
  • 33
  • 31
  • 31
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

The Sum-Rate Capacity of a Cognitive Multiple Access Sensor Network

Panagos, Adam, Kosbar, Kurt 10 1900 (has links)
ITC/USA 2007 Conference Proceedings / The Forty-Third Annual International Telemetering Conference and Technical Exhibition / October 22-25, 2007 / Riviera Hotel & Convention Center, Las Vegas, Nevada / This paper investigates the sum-rate capacity of a cognitive multiple access (MAC) sensor network. The multiple access network consists of K sensors communicating to a common base station. Outside of the network exists another user of the radio spectrum. Each sensor of the MAC network is aware (i.e. cognitive) of this user, denoted the primary user, and transmits in a manner to avoid any interference to this user. No interference transmission is achieved using the dirty-paper coding technique. The sum-rate capacity is the theoretical maximum of the sum of the simultaneously achievable rates of each sensor within the network. Using a recently derived iterative algorithm, we quantify the sum-rate capacity of this network and investigate its behavior as a function of the number of sensors, cognitive signal-to-noise ratio (CSNR) and primary SNR (PSNR) in a Rayleigh fading environment. We also derive bounds and scaling results for the ergodic sum-rate capacity.
52

Evaluation of spectrally efficient indoor optical wireless transmission techniques

Fath, Thilo Christian Martin January 2014 (has links)
Optical wireless communications (OWC) has the potential to become a remedy for the shortage of the radio frequency (RF) spectrum. Especially in indoor environments, OWC could enable wireless home networking systems which offload data traffic from existing RF systems. In OWC, data is transmitted by modulating the intensity of light sources, typically incoherent light emitting diodes (LEDs). Thus, OWC systems employ intensity modulation (IM) and direct detection (DD) of the optical carrier. Since off-the-shelf LEDs have a limited modulation capability, the transmission bandwidth of practical OWC systems is restricted. Consequently, the available bandwidth has to be used efficiently. In this thesis, spectrally efficient optical wireless transmission techniques are evaluated. Firstly, multiple transmitter-receiver techniques are investigated. These multiple-input-multiple-output (MIMO) techniques provide high spectral efficiency, and therefore high data rates. Specifically, the MIMO techniques repetition coding (RC), spatial multiplexing (SMP) and spatial modulation (SM) are analysed for indoor OWC. The performance of these techniques is evaluated analytically and by means of computer simulations. It is shown that inducing power imbalance between the multiple optical transmitters can substantially improve the performance of optical MIMO techniques as the power imbalance improves the differentiability of the multiple channels. In addition, it is found that link blockage and the utilisation of transmitters having different optical wavelengths enhance channel differentiability as well. These methods enable the utilisation of optical MIMO techniques under conditions which typically disallow the application of MIMO schemes due to little differences between the multiple links. Secondly, a novel optical wireless transmitter concept is developed. This concept uses discrete power level stepping to generate intensity modulated optical signals, such as orthogonal frequency division multiplexing (OFDM) waveforms. The transmitter consists of several on-off-switchable LED groups which are individually controlled to emit scaled optical intensities. As a result, the digital-to-analogue conversion of the signals to be sent is done in the optical domain. This method enables the implementation of low-complex and power-efficient optical transmitter front-ends – the major shortcoming of conventional optical OFDM transmitters. Thirdly, a novel approach for wireless data transmission within an aircraft cabin is presented. The data is transferred by 2-dimensional visual code sequences. These sequences are displayed on the in-flight entertainment (IFE) screen and are captured by the built-in camera of a user device which acts as receiver. Transmission experiments within an aircraft cabin mock-up demonstrate the functionality of the implemented system under realistic conditions, such as ambient illumination and geometric configuration. Altogether, this thesis has analysed the potential of spectrally efficient optical wireless transmission techniques. It is shown that OWC systems can greatly benefit from these techniques.
53

SOFTWARE RADIO TECHNOLOGY AND CHALLENGES

Chapin, John, Shah, Alok 10 1900 (has links)
International Telemetering Conference Proceedings / October 21, 2002 / Town & Country Hotel and Conference Center, San Diego, California / This paper provides an overview of software radio and its current state in the industry. Software radio is a technology in which all of the waveform processing, including the physical layer, of a wireless device moves into software. If designed properly, this approach leads to dramatically improved device flexibility, software portability, and reduced development costs. Of course, such a technology brings with it numerous challenges, from hardware components to power constraints to the regulatory environment.
54

Digital Compensation Techniques for Transmitters inWireless Communications Networks

Zenteno, Efrain January 2015 (has links)
Since they appeared, wireless technologies have deeply transformed our society. Today, wireless internet access and other wireless applications demandincreasingly more traffic. However, the continuous traffic increase can be unbearableand requires rethinking and redesigning the wireless technologies inmany different aspects. Aiming to respond to the increasing needs of wirelesstraffic, we are witnessing a rapidly evolving wireless technology scenario.This thesis addresses various aspects of the transmitters used in wireless communications.Transmitters present several hardware (HW) impairments thatcreate distortions, polluting the radio spectrum and decreasing the achievabletraffic in the network. Digital platforms are now flexible, robust and cheapenough to enable compensation of HW impairments at the digital base-bandsignal. This has been coined as ’dirty radio’. Dirty radio is expected in future transmitters where HW impairments may arise to reduce transmitter cost or to enhance power efficiency. This thesis covers the software (SW) compensation schemes of dirty radio developed for wireless transmitters. As describedin the thesis, these schemes can be further enhanced with knowledge of thespecific signal transmission or scenarios, e.g., developing cognitive digital compensationschemes. This can be valuable in today’s rapidly evolving scenarioswhere multiple signals may co-exist, sharing the resources at the same radiofrequency (RF) front-end. In the first part, this thesis focuses on the instrumentation challenges andHWimpairments encountered at the transmitter. A synthetic instrument (SI)that performs network analysis is designed to suit the instrumentation needs.Furthermore, how to perform nonlinear network analysis using the developedinstrument is discussed. Two transmitter HW impairments are studied: themeasurement noise and the load impedance mismatch at the transmitter, asis their coupling with the state-of-the-art digital compensation techniques.These two studied impairments are inherent to measurement systems and areexpected in future wireless transmitters. In the second part, the thesis surveys the area of behavioral modeling and digital compensation techniques for wireless transmitters. Emphasis is placed on low computational complexity techniques. The low complexity is motivated by a predicted increase in the number of transmitters deployed in the network, from base stations (BS), access points and hand-held devices. A modeling methodology is developed that allows modeling transmitters to achieve both reduced computational complexity and low modeling error. Finally, the thesis discusses the emerging architectures of multi-channel transmittersand describes their digital compensation techniques. It revises the MIMOVolterra series formulation to address the general modeling problem anddrafts possible solutions to tackle its dimensionality. In the framework of multi-channel transmitters, a technique to compensate nonlinear multi-carrier satellite transponders is presented. This technique is cognitive because it uses the frequency link planning and the pulse-shaping filters of the individual carriers. This technique shows enhanced compensation ability at reduced computational complexity compared to the state-of-the-art techniques and enables the efficient operation of satellite transponders. / <p>QC 20150526</p>
55

Optimal communications system design for array-based electric generation

Orozco, Ricardo 03 November 2011 (has links)
The world's demand for energy is an ongoing challenge, which has yet to be overcome. The efforts to find clean energy alternatives to fossil fuels have been hampered by the lack of investment in technology and research. Among these clean energy alternatives are ocean waves and wind. Wind power is generated through the use of wind generators that harness the wind's kinetic energy; it has gained worldwide popularity as a large-scale energy source, but only provides less than one percent of global energy consumption. Due to infrastructure limitations on installations of wind turbines at locations where high winds exist, wind energy faces critical challenges difficult to overcome to continue improving electricity generation. Ocean wave energy on the other hand seems like a promising adjunction to wind energy. Ocean energy comes in a variety of forms such as marine currents, tidal currents, geothermal vents and waves. Most of today's research however is based on wave energy. It has been estimated that approximately 257 Terawatt hour per year (TWh/year) could be extracted from ocean waves alone. This amount of energy could be enough to meet the U.S. energy demands of 28 TWh/year. Technologies such as point absorbers, attenuators and overtopping devices are examples of wave energy converters. Point absorbers use a floating structure with components that move relative to each other due to the wave action. The relative motion is used to drive electromechanical or hydraulic energy converters. The total energy throughput of a single point absorber however, does not justify for the great engineering cost and effort by researchers. Thus the need to explore other alternatives of wave conversion that result in no extra-added cost but yet increases throughput. Our research focuses on exploring a novel method to maximize wave energy conversion of an array-based point absorber wave farm. Unlike previous research, our method incorporates a predictive control algorithm to aid the wave farm with the prediction of dynamics and optimal control trajectory over a finite time and space horizon of ocean waves. By using a predictive control algorithm, wave energy conversion throughput can be increased as opposed to a system without. This algorithm requires that the wave characteristics of the incoming wave be provided in advance for appropriate processing. This thesis focuses on designing an efficient and reliable wireless communications system capable of delivering wave information such as speed, height and direction to each point absorber in the network for further processing by the predictive control algorithm. This process takes place in the presence of harsh environmental conditions where the random shape of waves and moving surface can further affect the communication channel. In this work we focus on the physical layer where the transmission of bits over the wireless medium takes place. Specifically we are interested in reducing the bit error rate with a unique relaying protocol to increase packet transmission reliability. We make use of cooperative diversity and existing protocols to achieve our goal of merit and improve end-to-end system performance. / Graduation date: 2012
56

Broadband Low-Noise CMOS Mixers For Wireless Communications

Jiang, FAN 03 October 2013 (has links)
In this thesis, three broadband low-noise mixing circuits which use CMOS 130 nm technology are presented. As one of the first few stages in a receiving front-end, stringent requirements are posted on mixer performance. The Gilbert cell mixers have presented excellent properties and achieved wide applications. However, the noise of a conventional active Gilbert cell mixer is high. This thesis demonstrates both passive and active mixing circuits with improved noise performance while maintaining the advantages of the Gilbert cell-based mixing core. Furthermore, wide bandwidth and variable gain are implemented, making the designed mixers multi-functional, yet with compact sizes and low power consumptions. The first circuit is a passive 2x subharmonic mixer that works from 4.5 GHz to 8.5 GHz. The subharmonic mixing core is a two-stage passive Gilbert cell driven by a quadrature LO signal. Together with a noise-cancelling transconductor and an inverter-based TIA, this subharmonic mixer possesses an excellent broadband conversion gain and a low noise figure. Measurement results show a high conversion gain of 16 dB and a low average DSB NF of 9 dB. The second design is a broadband low-noise variable gain mixer which operates between 1 and 6 GHz. The transconductor stage is implemented with noise cancellation and current bleeding techniques. Series inductive peaking is used to extend the bandwidth. Gain variation is achieved by a current-steering IF stage. Measurements show a wide gain control range of 13 dB and a low noise performance over the entire frequency and gain range. The lowest DSB NF is 3.8 dB and the highest DSB NF is 14.2 dB. The Third design is a broadband low-noise mixer with linear-in-dB gain control scheme. Using the same transconductance stage with the second circuit, this design also works from 1 to 6 GHz. A 10 dB linear-in-dB gain control range is achieved using an R-r load network with a linear-in-dB error less than $\pm$ 0.5 dB. Low noise performance is achieved. For different frequencies and conversion gains, the lowest DSB NF is 3.8 dB and the highest DSB NF is 12 dB. / Thesis (Master, Electrical & Computer Engineering) -- Queen's University, 2013-10-02 04:37:31.606
57

Analysis and design of metamaterial-inspired microwave structures and antenna applications

Kokkinos, Titos January 2010 (has links)
Novel metamaterial and metamaterial-inspired structures and microwave/antenna applications thereof are proposed and studied in this thesis. Motivated by the challenge of extending the applicability of metamaterial structures into practical microwave solutions, the underlying objective of this thesis has been the design of low-cost, easily fabricated and deployable metamaterial-related devices and the development of computational tools for the analysis of those. For this purpose, metamaterials composed of tightly coupled resonators are chosen for the synthesis of artificial transmission lines and enabling antenna applications. Specifically, fully-printed double spiral resonators are employed as modular elements for the design of tightly coupled resonators arrays. After thoroughly investigating the properties of such resonators, they are used for the synthesis of artificial lines in either grounded or non-grounded configurations. In the first case, the supported backward waves are exploited for the design of microstrip-based filtering/diplexing devices and series-fed antenna arrays. In the second case, the effective properties of such structures are employed for the design of a novel class of self-resonant, low-profile folded monopoles, exhibiting low mutual coupling and robust radiating properties. Such monopoles are, in turn, used for the synthesis of different sub-wavelength antenna arrays, such as superdirective arrays. Finally, an in-home periodic FDTD-based computational tool is developed and optimized for the efficient and rigorous analysis of planar, metamaterial-based, high-gain antennas.
58

Source and Channel Coding Strategies for Wireless Sensor Networks

Li, Li 12 1900 (has links)
In this dissertation, I focus on source coding techniques as well as channel coding techniques. I addressed the challenges in WSN by developing (1) a new source coding strategy for erasure channels that has better distortion performance compared to MDC; (2) a new cooperative channel coding strategy for multiple access channels that has better channel outage performances compared to MIMO; (3) a new source-channel cooperation strategy to accomplish source-to-fusion center communication that reduces system distortion and improves outage performance. First, I draw a parallel between the 2x2 MDC scheme and the Alamouti's space time block coding (STBC) scheme and observe the commonality in their mathematical models. This commonality allows us to observe the duality between the two diversity techniques. Making use of this duality, I develop an MDC scheme with pairwise complex correlating transform. Theoretically, I show that MDC scheme results in: 1) complete elimination of the estimation error when only one descriptor is received; 2) greater efficiency in recovering the stronger descriptor (with larger variance) from the weaker descriptor; and 3) improved performance in terms of minimized distortion as the quantization error gets reduced. Experiments are also performed on real images to demonstrate these benefits. Second, I present a two-phase cooperative communication strategy and an optimal power allocation strategy to transmit sensor observations to a fusion center in a large-scale sensor network. Outage probability is used to evaluate the performance of the proposed system. Simulation results demonstrate that: 1) when signal-to-noise ratio is low, the performance of the proposed system is better than that of the MIMO system over uncorrelated slow fading Rayleigh channels; 2) given the transmission rate and the total transmission SNR, there exists an optimal power allocation that minimizes the outage probability; 3) on correlated slow fading Rayleigh channels, channel correlation will degrade the system performance in linear proportion to the correlation level. Third, I combine the statistical ranking of sensor observations with cooperative communication strategy in a cluster-based wireless sensor network. This strategy involves two steps: 1) ranking the sensor observations based on their test statistics; 2) building a two-phase cooperative communication model with an optimal power allocation strategy. The result is an optimal system performance that considers both sources and channels. I optimize the proposed model through analyses of the system distortion, and show that the cooperating nodes achieve maximum channel capacity. I also simulate the system distortion and outage to show the benefits of the proposed strategies.
59

High speed energy efficient incoherent optical wireless communications

Tsonev, Dobroslav Antonov January 2015 (has links)
The growing demand for wireless communication capacity and the overutilisation of the conventional radio frequency (RF) spectrum have inspired research into using alternative spectrum regions for communication. Using optical wireless communications (OWC), for example, offers significant advantages over RF communication in terms of higher bandwidth, lower implementation costs and energy savings. In OWC systems, the information signal has to be real and non-negative. Therefore, modifications to the conventional communication algorithms are required. Multicarrier modulation schemes like orthogonal frequency division multiplexing (OFDM) promise to deliver a more efficient use of the communication capacity through adaptive bit and energy loading techniques. Three OFDM-based schemes – direct-current-biased OFDM (DCO-OFDM), asymmetrically clipped optical OFDM(ACO-OFDM), and pulse-amplitude modulated discrete multitone (PAM-DMT) – have been introduced in the literature. The current work investigates the recently introduced scheme subcarrier-index modulation OFDM as a potential energy-efficient modulation technique with reduced peak-to-average power ratio (PAPR) suitable for applications in OWC. A theoretical model for the analysis of SIM-OFDMin a linear additive white Gaussian noise (AWGN) channel is provided. A closed-form solution for the PAPR in SIM-OFDM is also proposed. Following the work on SIM-OFDM, a novel inherently unipolar modulation scheme, unipolar orthogonal frequency division multiplexing (U-OFDM), is proposed as an alternative to the existing similar schemes: ACO-OFDMand PAM-DMT. Furthermore, an enhanced U-OFDMsignal generation algorithm is introduced which allows the spectral efficiency gap between the inherently unipolar modulation schemes – U-OFDM, ACO-OFDM, PAM-DMT – and the conventionally used DCO-OFDM to be closed. This results in an OFDM-based modulation approach which is electrically and optically more efficient than any other OFDM-based technique proposed so far for intensity modulation and direct detection (IM/DD) communication systems. Non-linear distortion in the optical front-end elements is one of the major limitations for high-speed communication in OWC. This work presents a generalised approach for analysing nonlinear distortion in OFDM-based modulation schemes. The presented technique leads to a closed-form analytical solution for an arbitrary memoryless distortion of the information signal and has been proven to work for the majority of the known unipolar OFDM-based modulation techniques - DCO-OFDM, ACO-OFDM, PAM-DMT and U-OFDM. The high-speed communication capabilities of novel Gallium Nitride based μm-sized light emitting diodes (μLEDs) are investigated, and a record-setting result of 3.5Gb/s using a single 50-μm device is demonstrated. The capabilities of using such devices at practical transmission distances are also investigated, and a 1 Gb/s link using a single device is demonstrated at a distance of up to 10m. Furthermore, a proof-of-concept experiment is realised where a 50-μm LED is successfully modulated using U-OFDM and enhanced U-OFDM to achieve notable energy savings in comparison to DCO-OFDM.
60

On Dynamic Spectrum Access in Cognitive Radio Networking

Rutabayiro Ngoga, Said January 2013 (has links)
The exploding increase of wireless communications combined with the existing inefficient usage of the licensed spectrum gives a strong impetus to the development and standardization of cognitive radio networking and communications. In this dissertation, a framework for Dynamic Spectrum Access (DSA) is first presented, which is the enabling technology for increasing the spectral efficiency of wireless communications. Based on that, Cognitive Radio (CR) can be developed as an enabling technology for supporting the DSA, which means that the wireless users are provided with enhanced capability for sensing the operating radio environment and for exploiting the network side information obtained from this sensing. The DSA concept means that the users of a wireless system are divided into a multi-tiered hierarchy with the primary users (PUs) entitled to protection and with cognitive radio capable secondary users (SUs). The improved spectrum efficiency is obtained by means of a medium access control protocol with knowledge about the statistical properties or available local information of the channels already occupied by PUs as well as knowledge about the interference tolerance within which the interference to PUs is kept to a given level. Related to this, emphasis is laid on the protocol capability to determine the efficiency of the secondary sharing of spectrum. Based on the type of available local information, the capacity of opportunistic communication is investigated for three models. These are: with dynamic, distributed channels information; with dynamic, parallel channels information; and under a dynamic sub-channels allocation scheme. The results indicate that this capacity is robust with reference to the uncertainty associated with localized sensing of distributed dynamic channels and with timely sensing of parallel dynamic channels. The extension to dynamic parallel sub-channels enables resource allocation to be carried out in sub-channels. The analytical results on the performance of sub-channel allocation indicate a robust traffic capacity in terms of blocking probability, drop-out probability and delay performance as function of PUs traffic loads.

Page generated in 0.1157 seconds