Spelling suggestions: "subject:"aireless betworks."" "subject:"aireless conetworks.""
331 |
Algorithms and optimization for quality of experience aware routing in wireless networks : from centralized to decentralized solutions / Algorithmes centralisés et distribués pour le routage basé sur la qualité d'expérience dans les réseaux sans-filPham, Tran Anh Quang 27 January 2017 (has links)
Les WMNs comportent des nœuds qui sont capables de recevoir et de transmettre des données vers de multiples destinations dans le réseau. De ce fait, les WMNs sont capables de s'auto-organiser et auto-configurer dynamiquement [5]. Chaque nœud crée et maintient la connectivité avec ses voisins. La disponibilité du mode ad-hoc basée sur la norme IEEE 802.11 permet une mise en œuvre de WMNs à faible coût. Les WMNs présentent cependant deux inconvénients majeurs liés aux interférences d'une part et à la scalabilité d'autre part [6]. (D1) Le problème des interférences (D2) Le problème de scalabilité. Les solutions existantes au niveau de la couche PHY ou de la couche MAC peuvent apporter des solutions au problème des interférences mentionné ci-dessus (cf. D1) . D'un autre côté, le problème de scalabilité dans les WMNs peut être résolu par les solutions de routage efficaces [11]. En effet, les algorithmes de routage dans les WMNs sont chargés de calculer des routes pour transporter des données de multiples sauts jusqu' à atteindre les destinations. Comme illustré dans [11], les routes les plus courtes, qui sont les solutions par défaut des algorithmes de routage classiques, ont généralement plus d'interférences. En conséquences, il faut trouver des routes qui ont moins d'interférences. Pour un objectif de routage donné et des paramètres donnés, ces routes peuvent être optimales ou sub-optimales. Les objectifs de routage peuvent être par exemple de maximiser la bande passante entre utilisateurs, ou de minimiser les pertes de paquets, etc. Les paramètres dans les problèmes de routage comprennent des métriques orientées réseau et des métriques orientées utilisateur. Les métriques orientées réseau, également appelées les métriques de la qualité de service (QoS), sont dérivées à partir des paramètres réseau comme la bande passante, le délai, la gigue, etc. En revanche, les métriques orientées vers l'utilisateur, également appelées les métriques de qualité d'expérience (QoE), sont basées sur l'expérience de l'utilisateur, tels que les notes MOS (Mean Opinion Score) qui indiquent le niveau de satisfaction de l'utilisateur. La perception de l'utilisateur est un objectif majeur des services de streaming vidéo. La plupart des algorithmes de routage existants prennent des décisions de routage en fonction d'une seule ou d'une combinaison des métriques orientées réseau. Ainsi, les algorithmes de routage dans [12, 13, 14] déterminent les routes basées sur la bande passante et la charge du réseau. Cependant, les métriques orientées réseau ne sont pas nécessairement corrélée à l'expérience de l'utilisateur [15, 16, 17, 18]. En d'autres termes, les utilisateurs peuvent ne pas être satisfaits même avec les routes optimales qui sont basées sur les métriques orientés réseau. En conséquences, il est nécessaire de développer les algorithmes de routage qui tiennent compte de métriques orientées utilisateur. Cette thèse traite d'algorithmes de routage dans les WMNs avec comme objectif d'améliorer la qualité pour les applications de streaming vidéo. Les algorithmes de routage proposés prendront des décisions de routage basées sur la perception de l'utilisateur. Dans ce contexte, toutes les solutions doivent faire face aux deux challenges suivants : (M1) l'estimation en temps réel de la perception utilisateur et (M2) découverte des routes optimales ou sous-optimales. / WMNs comprise nodes that are able to receive and forward the data to other destinations in the networks. Consequently, WMNs are able to dynamically self-organize and self-configure [5]. Each node itself creates and maintains the connectivity with its neighbors. The availability of ad-hoc mode on popular IEEE 802.11 allows low-cost implementation of WMNs. Nevertheless, WMNs have two major drawbacks: interference and scalability as discussed in [6]. (D1) Interference : The independent behaviour and arbitrary deployment of nodes in WMNs can create an extremely high interference environment, which leads to degradation in the quality of wireless connections. For instance, the Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) mechanism of IEEE 802.11 (CSMA/CA) has long delays and low resource utilization in dense networks [7]. Recent advancements in physical (PHY) and medium control access (MAC) layers, such as multiple-input multiple-output (MIMO) and multiple channels MAC, can overcome this challenge. The deployment of some solutions are unable in practice because of specific requirements of hardware. Moreover, some implementations such as multiple channel MAC requires high synchronization, which is difficult in WMNs [8]. (D2) Scalability: Multi-hop communication are able to improve coverage and band-width availability in wireless networks [9]. However, it has scalability issues as discussed in [10, 11]. It means that the performance of networks deteriorates significantly when the size of networks grows. PHY layer may experience an extremely noisy medium, thus causing throughput degradation at MAC layer. Moreover, the noisy environment increases the packet loss rate, which impacts significantly to network and transport layers. The existing solutions at PHY or MAC layer can solve the interference problem mentioned in D1. Meanwhile, the scalability of WMNs could be tackled by routing solutions [11]. Routing algorithms are responsible for computing routes so as to convey data through multiple hops until reaching the destinations. As shown in [11], the shortest-path routes, which are the default solutions of conventional routing algorithms, usually have more interference. The solution, subsequently, is finding other routes that have less interference. These routes could be optimal or sub-optimal with given objectives and arguments. The arguments of routing problems comprise of network-oriented metrics and User-oriented metrics. Network-oriented metrics, also called as Quality of Service (QoS) metrics, are derived from the network directly such as bandwidth, delay, jitter, etc. Meanwhile, User-oriented metrics, also called as Quality of Experience (QoE) metrics, are based on users’ experience such as mean opinion score (MOS). They represent the level of satisfaction of a users. The good perception of users is the major objective of video streaming services. Most of existing routing algorithms give routing decisions based on single or combination of network-oriented metrics. For example, the routing algorithms in [12, 13, 14] determine routes based on the bandwidth and congestion. Nevertheless, network-oriented metrics may not be well-correlated to users’ experience [15, 16, 17, 18]. In other words, users may not be satisfied even with optimal network-oriented metric routes. As a result, it is necessary to develop routing algorithms that take user-oriented metrics into account. This thesis addresses the routing of video streaming over WMNs and proposes novel routing algorithms. These routing algorithms give routing decisions based on the perception of users. To do that, the proposed solution has to address two challenges as follows :(M1) estimate users’ perception in real-time and (M2) find optimal or sub-optimal routes efficiently.
|
332 |
Analýza útoků na bezdrátové sítě / Analysis of wireless network attacksKačic, Matej Unknown Date (has links)
This work describes security mechanisms of wireless network based on 802.11 standard and security enhancement 802.11i of these networks known as WPA2, where the analysis of vulnerabilities and attacks on these networks were performed. The work discusses two major security issues. The first is unsecure management frames responsible for vulnerability with direct impact on availability and the other is the vulnerability that allows executing the impersonalize type of attacks. The system for generation attacks was designed to realize any attack very fast and efficient. The core of the thesis is the design of a system for attack analysis using the principle of trust and reputation computation. The conclusion of the work is devoted to experimenting with the proposed system, especially with the selection of suitable metrics for calculating the trust value.
|
333 |
Zabezpečení standardu 802.11 a jeho možnosti / 802.11 standard security techniques and their featuresEndrle, Pavel January 2009 (has links)
This master´s thesis is about 802.11 standard security techniques and their features. Particular types of this standard and its features are shown in the introduction. Wireless network security cypher alghoritm types, their features, weaknesses and principles of functions are closely described in next few chapters. Realized attacks on these security alghoritms with their principles are described and shown in the practical part of thesis. One chapter is about effectivity, accessibility and practicability valorization of these attacks in practice.
|
334 |
Komunikační technologi ZigBee v automatizaci budov / ZigBee in Building AutomationLiška, Radovan January 2011 (has links)
Improvement of wireless technologies is a natural consequence of the progress in the field of science and technology. Usage of wireless networks based on the ZigBee technology, which are capable of indepent operation in present form, providing detailed information about physical environment and process management, brings many advantages. On the other hand, there is a serious issue about commissioning. This Master's Thesis deals with introduction of ZigBee technology and its usage, describes issue about device commissioning and types of commissioning. The main part of the Thesis is my own proposal for solving this problem, proposing algorithm using the Bitcloud stack for Coordinator, End Device and Router and its demonstration at the application. Along with analysing the application there are described possible solutions for creating a new network, adding a new node into the existing network and changing a node. The result is a graphical application and firmware for each device. The result of succesfully associated devices in network is supported by the measurement.
|
335 |
Optický přenos informací - bezpečnost přenosu / Optical information transmission - transmission securityKondicz, Dávid January 2015 (has links)
The submitted work deals with issues of optical transmissions and its security. We will become familiar with a variety of transferability of information, based on which we can assess the advantages and disadvantages of each technology as compared to optical information transmission. Based on acquired information we will try to implement interception of optical communication of cable TV provider.
|
336 |
Energy Efficient, Cooperative Communication in Low-Power Wireless NetworksAbdelkader, Abdelrahman 10 June 2020 (has links)
The increased interest in massive deployment of wireless sensors and network densification requires more innovation in low-latency communication across multi-hop networks. Moreover, the resource constrained nature of sensor nodes calls for more energy efficient transmission protocols, in order to increase the battery life of said devices. Therefore, it is important to investigate possible technologies that would aid in improving energy efficiency and decreasing latency in wireless sensor networks (WSN) while focusing on application specific requirements. To this end, and based on state of the art Glossy, a low-power WSN flooding protocol, this dissertation introduces two energy efficient, cooperative transmission schemes for low-power communication in WSNs, with the aim of achieving performance gains in energy efficiency, latency and power consumption. These approaches apply several cooperative transmission technologies such as physical layer network coding and transmit beamforming. Moreover, mathematical tools such as convex optimization and game theory are used in order to analytically construct the proposed schemes. Then, system level simulations are performed, where the proposed schemes are evaluated based on different criteria.
First, in order to improve over all latency in the network as well as energy efficiency, MF-Glossy is proposed; a communication scheme that enables the simultaneous flooding of different packets from multiple sources to all nodes in the network. Using a communication-theoretic analysis, upper bounds on the performance of Glossy and MF-Glossy are determined. Further, simulation results show that MF-Glossy has the potential to achieve several-fold improvements in goodput and latency across a wide spectrum of network configurations at lower energy costs and comparable packet reception rates. Hardware implementation challenges are discussed as a step towards harnessing the potential of MF-Glossy in real networks, while focusing on key challenges and possible solutions.
Second, under the assumption of available channel state information (CSI) at all nodes, centralized and distributed beamforming and power control algorithms are proposed and their performance is evaluated. They are compared in terms of energy efficiency to standard Glossy. Numerical simulations demonstrate that a centralized power control scheme can achieve several-fold improvements in energy efficiency over Glossy across a wide spectrum of network configurations at comparable packet reception rates. Furthermore, the more realistic scenario where CSI is not available at transmitting nodes is considered. To battle CSI unavailability, cooperation is introduced on two stages. First, cooperation between receiving and transmitting nodes is proposed for the process of CSI acquisition, where the receivers provide the transmitters with quantized (e.g. imperfect) CSI. Then, cooperation within transmitting nodes is proposed for the process of multi-cast transmit beamforming. In addition to an analytical formulation of the robust multi-cast beamforming problem with imperfect CSI, its performance is evaluated, in terms of energy efficiency, through numerical simulations. It is shown that the level of cooperation, represented by the number of limited feedback bits from receivers to transmitters, greatly impacts energy efficiency. To this end, the optimization problem of finding the optimal number of feedback bits B is formulated, as a programming problem, under QoS constraints of 5% maximum outage. Numerical simulations show that there exists an optimal number of feedback bits that maximizes energy efficiency. Finally, the effect of choosing cooperating transmitters on energy efficiency is studied, where it is shown that an optimum group of cooperating transmit nodes, also known as a transmit coalition, can be formed in order to maximize energy efficiency. The investigated techniques including optimum feedback bits and transmit coalition formation can achieve a 100% increase in energy efficiency when compared to state of the art Glossy under same operation requirements in very dense networks.
In summary, the two main contributions in this dissertation provide insights on the possible performance gains that can be achieved when cooperative technologies are used in low-power wireless networks.
|
337 |
Voice and rural wireless mesh community networks: a framework to quantify scalability and manage end-user smartphone battery consumptionOm, Shree January 2021 (has links)
Philosophiae Doctor - PhD / Community wireless mesh initiatives are a pioneering option to cheap ‘last-mile’ access to network services for rural low-income regions primarily located in Sub-Saharan Africa and Developing Asia. However, researchers have criticized wireless mesh networks for their poor scalability; and scalability quantification research has mostly consisted of modularization of per-node throughput capacity behaviour. A scalability quantification model to design wireless mesh networks to provide adequate quality of service is lacking. However, scalability quantification of community mesh networks alone is inadequate because rural users need affordable devices for access; and they need to know how best to use them. Low-cost low-end smartphones offer handset affordability solutions but require smart management of their small capacity battery. Related work supports the usage of Wi-Fi for communication because it is shown to consume less battery than 2G, 3G or Bluetooth. However, a model to compare Wi-Fi battery consumption amongst different low-end smartphones is missing, as is a comparison of different over-the-top communication applications.
|
338 |
ScaleMesh: A Scalable Dual-Radio Wireless Mesh TestbedElRakabawy, Sherif M., Frohn, Simon, Lindemann, Christoph 17 December 2018 (has links)
In this paper, we introduce and evaluate ScaleMesh, a scalable miniaturized dual-radio wireless mesh testbed based on IEEE 802.11b/g technology. ScaleMesh can emulate large-scale mesh networks within a miniaturized experimentation area by adaptively shrinking the transmission range of mesh nodes by means of variable signal attenuators. To this end, we derive a theoretical formula for approximating the attenuation level required for downscaling desired network topologies. We present a performance study in which we validate the feasibility of ScaleMesh for network emulation and protocol evaluation. We further conduct singleradio vs. dual-radio experiments in ScaleMesh, and show that dual-radio communication significantly improves network goodput. The median TCP goodput we observe in a typical random topology at 54 Mbit/s and dual-radio communication ranges between 1468 Kbit/s and 7448 Kbit/s, depending on the current network load.
|
339 |
TCP with Adaptive Pacing for Multihop Wireless NetworksElRakabawy, Sherif M., Klemm, Alexander, Lindemann, Christoph 17 December 2018 (has links)
In this paper, we introduce a novel congestion control algorithm for TCP over multihop IEEE 802.11 wireless networks implementing rate-based scheduling of transmissions within the TCP congestion window. We show how a TCP sender can adapt its transmission rate close to the optimum using an estimate of the current 4-hop propagation delay and the coefficient of variation of recently measured round-trip times. The novel TCP variant is denoted as TCP with Adaptive Pacing (TCP-AP). Opposed to previous proposals for improving TCP over multihop IEEE 802.11 networks, TCP-AP retains the end-to-end semantics of
TCP and does neither rely on modifications on the routing or the link layer nor requires cross-layer information from intermediate nodes along the path. A comprehensive simulation study using ns-2 shows that TCP-AP achieves up to 84% more goodput than TCP NewReno, provides excellent fairness in almost all scenarios, and is highly responsive to changing traffic conditions.
|
340 |
Advanced Protocols for Peer-to-Peer Data Transmission in Wireless Gigabit NetworksFriedrich, Jan 04 September 2020 (has links)
This thesis tackles problems on IEEE 802.11 MAC layer, network layer and application layer, to further push the performance of wireless P2P applications in a holistic way. It contributes to the better understanding and utilization of two major IEEE 802.11 MAC features, frame aggregation and block acknowledgement, to the design and implementation of opportunistic networks on off-the-shelf hardware and proposes a document exchange protocol, including document recommendation.
First, this thesis contributes a measurement study of the A-MPDU frame aggregation behavior of IEEE 802.11n in a real-world, multi-hop, indoor mesh testbed. Furthermore, this thesis presents MPDU payload adaptation (MPA) to utilize A-MPDU subframes to increase the overall throughput under bad channel conditions. MPA adapts the size of MAC protocol data units to channel conditions, to increase the throughput and lower the delay in error-prone channels. The results suggest that under erroneous conditions throughput can be maximized by limiting the MPDU size.
As second major contribution, this thesis introduces Neighborhood-aware OPPortunistic networking on Smartphones (NOPPoS). NOPPoS creates an opportunistic, pocket-switched network using current generation, off-the-shelf mobile devices. As main novel feature, NOPPoS is highly responsive to node mobility due to periodic, low-energy scans of its environment, using Bluetooth Low Energy advertisements.
The last major contribution is the Neighborhood Document Sharing (NDS) protocol. NDS enables users to discover and retrieve arbitrary documents shared by other users in their proximity, i.e. in the communication range of their IEEE 802.11 interface. However, IEEE 802.11 connections are only used on-demand during file transfers and indexing of files in the proximity of the user. Simulations show that NDS interconnects over 90 \% of all devices in communication range.
Finally, NDS is extended by the content recommendation system User Preference-based Probability Spreading (UPPS), a graph-based approach. It integrates user-item scoring into a graph-based tag-aware item recommender system. UPPS utilizes novel formulas for affinity and similarity scoring, taking into account user-item preference in the mass diffusion of the recommender system. The presented results show that UPPS is a significant improvement to previous approaches.
|
Page generated in 0.0389 seconds