Spelling suggestions: "subject:"aireless communication"" "subject:"fireless communication""
71 |
Key management for mobile ad-hoc networksBudakoglu, Caner. 10 April 2008 (has links)
No description available.
|
72 |
Integrated Self-Interference Cancellation for Full-Duplex and Frequency-Division Duplexing Wireless Communication SystemsZhou, Jin January 2017 (has links)
From wirelessly connected robots to car-to-car communications, and to smart cities, almost every aspect of our lives will benefit from future wireless communications. While promise an exciting future world, next-generation wireless communications impose requirements on the data rate, spectral efficiency, and latency (among others) that are higher than those for today's systems by several orders of magnitude.
Full-duplex wireless, an emergent wireless communications paradigm, breaks the long-held assumption that it is impossible for a wireless device to transmit and receive simultaneously at the same frequency, and has the potential to immediately double network capacity at the physical (PHY) layer and offers many other benefits (such as reduced latency) at the higher layers. Recently, discrete-component-based demonstrations have established the feasibility of full-duplex wireless. However, the realization of integrated full duplex radios, compact radios that can fit into smartphones, is fraught with fundamental challenges. In addition, to unleash the full potential of full-duplex communication, a careful redesign of the PHY layer and the medium access control (MAC) layer using a cross-layer approach is required.
The biggest challenge associated with full duplex wireless is the tremendous amount of transmitter self-interference right on top of the desired signal. In this dissertation, new self-interference-cancellation approaches at both system and circuit levels are presented, contributing towards the realization of full-duplex radios using integrated circuit technology. Specifically, these new approaches involve elimination of the noise and distortion of the cancellation circuitry, enhancing the integrated cancellation bandwidth, and performing joint radio frequency, analog, and digital cancellation to achieve cancellation with nearly one part-per-billion accuracy.
In collaboration with researchers at higher layers of the stack, a cross-layer approach has been used in our full-duplex research and has allowed us to derive power allocation algorithms and to characterize rate-gain improvements for full-duplex wireless networks. To enable experimental characterization of full-duplex MAC layer algorithms, a cross-layered software-defined full-duplex radio testbed has been developed. In collaboration with researchers from the field of micro-electro-mechanical systems, we demonstrate a multi-band frequency-division duplexing system using a cavity-filter-based tunable duplexer and our integrated widely-tunable self-interference-cancelling receiver.
|
73 |
Multi-cell coordinated beamforming and admission control in wireless cellular networks.January 2012 (has links)
協作多點 (CoMP)是一種最近興起的傳輸技術,其主要作用為應付新一代無線通訊系統中的小區間干擾問題。在過去十數年內,研究員研發了 CoMP中一些關鍵的新技術,當中包括 MIMO合作和干擾協調。本論文考慮一個聯合用戶排程和干擾協調的問題。在傳統的研究中,用戶排程和干擾協調通常作為獨立的問題進行研究。可是,從本質上這兩個問題是相互影響的,因此傳統的研究將導致系統性能退化。為此,本論文探討了一個聯合用戶排程和波束形成(JACoB)的問題,這當中採用了一種稱為協同波束形成(CoBF)的干擾協調技術。具體而言,本文把 JACoB問題表達成了一個可支持用戶數最大化的問題,而其中的 CoBF設計將盡可能地配合用戶的需求而改變。 / 本論文有兩個主要的貢獻。第一,本文把 JACoB問題轉換成一個 ℓ₀範數最小化問題。其後本文採用 ℓ₁範數近似法將 JACoB問題近似為一個凸優化問題。第二,本文提出一種新型的分佈 JACoB方法。本文提出的分佈方法是基於塊坐標下降法。該方法不同於傳統的基於次梯度方法的分佈方法,如原始/對偶分解。 / 仿真結果顯示,採用本文提出的 JACoB方法(無論是集中的或是分佈的)所能支持的用戶數量遠超過現有的固定波束形成方法。此外,本文提出的分佈 JACoB方法能達到與集中JACoB方法相近的性能,而且其收斂速度亦是相當快的。 / Coordinated MultiPoint (CoMP) cooperative transmission has recently emerged as a promising technique for mitigating intercell interference in next generation wireless communication systems. Several key techniques for CoMP have been endeavored over the past decades, for example, MIMO cooperation and interference coordination. The present work studies a joint user scheduling and interference coordination problem in the CoMP downlink systems. Conventionally, user scheduling and interference coordination are treated as separate problems. This may result in a degradation of the system performance as the two problems are actually intertwined with each other. As such, this thesis considers a joint admission control and beamforming (JA-CoB) problem which employs a popular interference coordination technique called coordinated beamforming (CoBF). In particular, the JA-CoB problem is stated as a user number maximization problem where the CoBF design can be adapted to the set of selected users. / There are two major contributions in this thesis. Firstly, the JA-CoB problem is cast as an ℓ₀ norm minimization problem and then tackled by the now popularized ℓ₁ approximation technique. Secondly, a novel decentralized JACoB method is developed. The proposed de-centralized method is based on the simple block coordinate descent method, which is different from the conventional approaches which em-ploy subgradient-based method such as dual/primal decomposition. / The simulation results indicate that: i) the proposed centralized method yields a performance close to the optimum JACoB design while the complexity is significantly reduced; ii) employing the proposed JA-CoB methods (either centralized or decentralized) gives a significant gain over a fixed beamformers design in terms of the number of supported users. Moreover, the decentralized JACoB method achieves a performance close to its centralized counterpart, whilst the convergence speed is considerably fast. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Wai, Hoi To. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2012. / Includes bibliographical references (leaves 77-80). / Abstracts also in Chinese. / Abstract --- p.i / Acknowledgement --- p.iv / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Overview of techniques for CoMP --- p.2 / Chapter 1.2 --- Overview of user scheduling algorithms --- p.4 / Chapter 1.3 --- Contributions --- p.6 / Chapter 2 --- The JACoB problem and the related works --- p.8 / Chapter 2.1 --- System model --- p.8 / Chapter 2.2 --- Joint admission control and beamforming (JACoB) --- p.10 / Chapter 2.2.1 --- Coordinated beamformers design --- p.11 / Chapter 2.2.2 --- Semide nite relaxation for the CoBF problem --- p.13 / Chapter 2.3 --- Related works --- p.14 / Chapter 2.3.1 --- Common trend in JACoB - deflation heuristic . --- p.18 / Chapter 2.4 --- Decentralized methods --- p.19 / Chapter 3 --- Centralized JACoB method --- p.21 / Chapter 3.1 --- Step 1 - a new formulation to JACoB --- p.21 / Chapter 3.2 --- Step 2 - ℓ₁ approximation to JACoB --- p.24 / Chapter 3.2.1 --- Properties of the ℓ₁ JACoB problem --- p.26 / Chapter 3.3 --- Proposed JACoB method --- p.28 / Chapter 3.3.1 --- Prescreening procedure --- p.28 / Chapter 4 --- Decentralized JACoB method --- p.31 / Chapter 4.1 --- Block coordinate descent method --- p.32 / Chapter 4.2 --- Smooth approximation to ℓ₁ JACoB --- p.34 / Chapter 4.2.1 --- Empirical iteration complexity of the BCD method --- p.38 / Chapter 4.3 --- Proposed decentralized JACoB method --- p.40 / Chapter 5 --- Simulation results --- p.43 / Chapter 5.1 --- Performance of centralized JACoB methods --- p.44 / Chapter 5.2 --- Performance of decentralized JACoB methods --- p.48 / Chapter 5.3 --- Summary --- p.52 / Chapter 6 --- Conclusions and future directions --- p.53 / Chapter 6.1 --- Future directions --- p.53 / Chapter 6.1.1 --- From a practical point of view --- p.54 / Chapter 6.1.2 --- From a theoretical point of view --- p.54 / Chapter A --- A primal decomposition method for (3.4) --- p.56 / Chapter B --- A projected gradient method for (4.3) --- p.60 / Chapter C --- Proofs --- p.67 / Chapter C.1 --- KKT conditions for (2.6) and (3.5) --- p.67 / Chapter C.2 --- Proof of Proposition 2.1 --- p.68 / Chapter C.3 --- Proof of Proposition 3.3 --- p.69 / Chapter C.4 --- Proof of Proposition 3.2 --- p.69 / Chapter C.5 --- Proof of Proposition 3.5 --- p.71 / Chapter C.6 --- Proof of Fact 4.1 --- p.75 / Bibliography --- p.77
|
74 |
Lifetime maximization through adaptive power allocation in reconfigurable system design for wireless systems /Liu, Feng. January 2009 (has links)
Includes bibliographical references (p. 104-112).
|
75 |
Analysis and design of wireless systems with interface and provider diversity: competition and cooperationZemlianov, Alexander 28 August 2008 (has links)
Not available / text
|
76 |
Performance evaluation, optimal power allocation, and physical layer designs for wireless relaying systemsFarhadi, Golnaz Unknown Date
No description available.
|
77 |
An energy efficient link-layer security protocol for wireless sensor networksLightfoot, Leonard E. January 2006 (has links)
Thesis (M.S.)--Michigan State University. Dept. of Electrical & Computer Engineering, 2006. / Title from PDF t.p. (viewed on Nov. 20, 2008) Includes bibliographical references (p. 49-55). Also issued in print.
|
78 |
PLC-WiFi hybrid broadband Internet deployment and security /Mundi, Anuj V. January 2004 (has links)
Thesis (M.S.)--University of Florida, 2004. / Title from title page of source document. Document formatted into pages; contains 106 pages. Includes vita. Includes bibliographical references.
|
79 |
Spatial modeling of three-dimensional multipath wireless channels a dissertation /Valchev, Dimitar Georgiev. January 1900 (has links)
Thesis (Ph. D.)--Northeastern University, 2008. / Title from title page (viewed June 25, 2009). Graduate School of Engineering, Dept. of Electrical and Computer Engineering. Includes bibliographical references (p. 127-132).
|
80 |
Energy efficiency and reliability in wireless sensor networks /Zhu, Junhua. January 2009 (has links)
Thesis (Ph.D.)--Hong Kong University of Science and Technology, 2009. / Includes bibliographical references (p. 110-120).
|
Page generated in 0.1194 seconds