• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1381
  • 105
  • 95
  • 78
  • 28
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 3
  • 2
  • Tagged with
  • 1886
  • 1886
  • 1886
  • 484
  • 453
  • 284
  • 236
  • 234
  • 212
  • 174
  • 157
  • 154
  • 151
  • 148
  • 139
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Intelligent packet discarding policies for real-time traffic over wireless networks.

January 2006 (has links)
Yuen Ching Wan. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (leaves 77-83). / Abstracts in English and Chinese. / Abstract --- p.i / Acknowledgement --- p.iii / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Nature of Real-Time Traffic --- p.1 / Chapter 1.2 --- Delay Variability in Wireless Networks --- p.2 / Chapter 1.2.1 --- Propagation Medium --- p.3 / Chapter 1.2.2 --- Impacts of Network Designs --- p.5 / Chapter 1.3 --- The Keys - Packet Lifetime & Channel State --- p.8 / Chapter 1.4 --- Contributions of the Thesis --- p.8 / Chapter 1.5 --- Organization of the Thesis --- p.9 / Chapter 2 --- Background Study --- p.11 / Chapter 2.1 --- Packet Scheduling --- p.12 / Chapter 2.2 --- Call Admission Control (CAC) --- p.12 / Chapter 2.3 --- Active Queue Management (AQM) --- p.13 / Chapter 2.3.1 --- AQM for Wired Network --- p.14 / Chapter 2.3.2 --- AQM for Wireless Network --- p.17 / Chapter 3 --- Intelligent Packet Discarding Policies --- p.21 / Chapter 3.1 --- Random Packet Discard --- p.22 / Chapter 3.1.1 --- Variable Buffer Limit (VABL) --- p.22 / Chapter 3.2 --- Packet Discard on Expiration Likelihood (PEL) --- p.23 / Chapter 3.2.1 --- Working Principle --- p.24 / Chapter 3.2.2 --- Channel State Aware Packet Discard on Expiration Likelihood (CAPEL) --- p.26 / Chapter 3.3 --- System Modeling --- p.29 / Chapter 3.3.1 --- Wireless Channel as an Markov-Modulated Poisson Process (MMPP) --- p.30 / Chapter 3.3.2 --- System Analysis --- p.30 / Chapter 3.3.3 --- System Time Distribution --- p.33 / Chapter 3.3.4 --- Approximation of System Time Distribution by Gamma Distribution --- p.36 / Chapter 3.4 --- Goodput Analysis of Intelligent Packet Discarding Policies --- p.38 / Chapter 3.4.1 --- Variable Buffer Limit (VABL) --- p.38 / Chapter 3.4.2 --- CAPEL at the End-of-Line --- p.39 / Chapter 3.4.3 --- CAPEL at the Head-of-Line --- p.43 / Chapter 4 --- Performance Evaluation --- p.44 / Chapter 4.1 --- Simulation --- p.44 / Chapter 4.1.1 --- General Settings --- p.45 / Chapter 4.1.2 --- Choices of Parameters --- p.46 / Chapter 4.1.3 --- Variable Buffer Limit (VABL) --- p.49 / Chapter 4.1.4 --- CAPEL at the End-of-Line --- p.53 / Chapter 4.1.5 --- CAPEL at the Head-of-Line --- p.60 / Chapter 4.2 --- General Discussion --- p.64 / Chapter 4.2.1 --- CAPEL vs RED --- p.64 / Chapter 4.2.2 --- Gamma Approximation for System Time Distribution . --- p.69 / Chapter 5 --- Conclusion --- p.70 / Chapter A --- Equation Derivation --- p.73 / Chapter A.l --- Steady State Probabilities --- p.73 / Bibliography --- p.77
252

Markov state space analysis of IEEE standard MAC protocols. / CUHK electronic theses & dissertations collection

January 2012 (has links)
近年來,標準化的媒體訪問控制(MAC)協議,在無線局域網(WLAN)和無線傳感器網絡(WSNs)中起著重要的作用。其中具有分佈式協調功能 (DCF) 的IEEE 802.11協議目前是一種最流行的WLAN標準,它包括MAC層和物理層的規範;而規範了PHY-MAC 的IEEE 802.15.4協議,也成為了促進部署各種商業用途的無線傳感器網絡的一個重要的里程碑。IEEE 802.11 DCF和802.15.4 MAC協議的核心是使用與防撞載波偵聽多路訪問協議 (CSMA/CA)。 / 雖然對這類MAC協議的研究已經持續了幾十年,但是研究者們仍然無法對這些無線網絡進行全面徹底的性能分析。 / 鑑於這種原因,我們在這篇論文中提出了一種通用馬爾可夫狀態空間模型,用於分析基於CSMA/ CA的MAC協議。每個節點的輸入緩衝器被模擬為一個Geo/G/1隊列,我們用了馬爾可夫鏈來描述每一個隊頭封包(HOL)的服務時間分佈。在本篇文章裡,這種馬爾可夫模型理論被運用於分析在非飽和條件下,基於概率指數補償的調度算法的兩種網絡:在理想信道和非理想信道條件下的IEEE 802.11 DCF網絡,以及IEEE 802.15.4網絡。 / 從這個排隊模型中,我們獲得了網絡穩態下吞吐量的特性方程,數據包平均分組接入延遲以及排隊延遲。此外,對於IEEE802.15.4網絡,通過馬爾可夫模型我們也得到每個節點的能量消耗的準確表達。 / 在這篇論文中,我們闡述了對於MAC網絡的吞吐量和排隊延遲方面的穩定條件。基於這兩個穩定條件,我們能夠得出兩種區域:穩定的吞吐量區域和有界延遲區域,並發現它們與補償調度算法和總輸入量有著密切的關係。另外我們證明了這種指數補償演算法同樣適合龐大用戶量的網絡。 / 對於802.11 DCF網絡,我們發現基於RTS / CTS訪問機制的網絡性能受到總輸入量和轉播因子的影響比基於基本訪問機制的網絡來的小。此外,經過對比理想和非理想信道下網絡性能的表現,我們發現傳輸錯誤對網絡的吞吐量和延遲也會產生重大影響。對於IEEE802.15.4網絡,我們的研究結果證實在穩定的吞吐區域內,單個節點的能耗較少。 / 最後,我們將這種方法擴展到基於競爭窗口補償模型中,對比分析證明了概率補償演算法的模型可以有效地用於分析實際中基於競爭窗口機制的無線網絡。 / In recent years, the standardized Media Access Control (MAC) protocol plays an important role in wireless local area networks (WLANs) and wireless sensor networks (WSNs). The IEEE 802.11 protocol with distributed coordination function (DCF) is the most popular standard in WLANs that includes specifications for both MAC and physical layers, whereas the IEEE 802.15.4 PHY-MAC specifications represents a significant milestone in promoting deployment of WSNs for a variety of commercial uses. The core of the 802.11 DCF and 802.15.4 MAC protocols is the Carrier-Sense Multiple-Access protocol with Collision Avoidance (CSMA/CA). / Although the studies of such kinds of MAC protocols have been lasted for several decades, a thorough network performance analysis of these wireless networks still cannot be tackled in the existing works. / In light of this concern, we propose a generic Markov state space model of the MAC protocols with CSMA/CA for contention resolution in this thesis. The input buffer of each node is modeled as a Geo/G/1 queue, and the service time distribution is derived from a Markov chain describing the state transitions of head-of-line (HOL) packets. This Markov model is well demonstrated by the IEEE 802.11 DCF networks in either ideal channels or imperfect channels, and IEEE 802.15.4 networks, with probabilistic exponential backoff scheduling algorithm under non-saturated condition. / With this queueing model, we obtain the steady state characteristic equation of network throughput as well as the mean packet access and queueing delays of packets. Moreover, for the IEEE 802.15.4 networks, the accurate expressions of energy consumptions for each node can also be obtained through this Markov model. / In this dissertation, we specify the stability conditions in terms of throughput and queueing delay for MAC networks. These two stable conditions enable us to derive two kinds of regions: the stable throughput region and the bounded delay region, which is dependent on the backoff scheduling algorithm and the aggregate input traffic. We prove that the stable regions still exist even for an infinite population with exponential backoff. / For the IEEE 802.11 DCF networks, it depicts that the network performance of RTS/CTS access scheme is less dependent on the aggregate input rate and retransmission factor than that of the Basic access mechanism. Additionally, with the comparison of the networks performance under ideal and imperfect channels, we also show that the transmission errors have a significant impact on both throughput and delay of networks. For the IEEE 802.15.4 networks, our results confirm that the energy consumption of a single node is kept small within its stable throughput region. / Last but not least, we extend our approach to the contention-window-based backoff model, and depict that the probabilistic backoff model can serve as a good analytical model for the practical contention window mechanism. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Yin, Dongjie. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2012. / Includes bibliographical references (leaves 151-160). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese. / Chapter Chapter 1 --- Introduction of IEEE Standard MAC Protocols --- p.1 / Chapter 1.1 --- Medium Access Control (MAC) Protocols --- p.2 / Chapter 1.1.1 --- Medium access control in wireless LANs --- p.3 / Chapter 1.1.2 --- Medium access control in wireless sensor networks --- p.6 / Chapter 1.2 --- Backoff Scheduling Algorithms for Contention Resolution --- p.8 / Chapter 1.3 --- Our Methodologies --- p.11 / Chapter 1.3.1 --- Multi-queue-singer-server system --- p.11 / Chapter 1.3.2 --- State space of Markov chain for MAC protocols --- p.15 / Chapter 1.4 --- Contributions --- p.19 / Chapter 1.4.1 --- The Markov state space model of MAC protocols --- p.20 / Chapter 1.4.2 --- Stability analysis of networks --- p.20 / Chapter 1.4.3 --- Probabilistic exponential backoff and window-based exponential backoff --- p.21 / Chapter 1.5 --- Dissertation Overview --- p.22 / Chapter Chapter 2 --- IEEE 802.11 Distributed Coordination Function --- p.24 / Chapter 2.1 --- Introduction and Overview of IEEE 802.11 DCF --- p.25 / Chapter 2.1.1 --- Principle of IEEE 802.11 DCF protocols --- p.25 / Chapter 2.1.2 --- Historical background of IEEE 802.11 DCF --- p.26 / Chapter 2.1.3 --- Contributions of our works --- p.29 / Chapter 2.2 --- Queuing Model of HOL Packet for the 802.11 DCF --- p.31 / Chapter 2.2.1 --- Alternating renewal process of channel --- p.31 / Chapter 2.2.2 --- Queuing model of input buffer --- p.34 / Chapter 2.3 --- Stable Throughput Region for the 802.11 DCF --- p.42 / Chapter 2.3.1 --- Stable throughput condition --- p.43 / Chapter 2.3.2 --- Stable throughput region of exponential backoff --- p.45 / Chapter 2.4 --- Bounded Delay Region for IEEE 802.11 --- p.52 / Chapter 2.4.1 --- Bounded delay condition --- p.52 / Chapter 2.4.2 --- Bounded delay region of exponential backoff --- p.53 / Chapter 2.5 --- Window-based Exponential Backoff --- p.57 / Chapter 2.6 --- Conclusion --- p.63 / Chapter Chapter 3 --- IEEE 802.11 DCF in Presence of Non-Ideal Transmission Channel --- p.65 / Chapter 3.1 --- Introduction of IEEE 802.11 DCF with Error-Prone --- p.66 / Chapter 3.1.1 --- Collision and error control in 802.11 DCF --- p.66 / Chapter 3.1.2 --- Historical background --- p.69 / Chapter 3.2 --- Queuing Model of Input Buffer for the 802.11 DCF with Error-Prone Channels --- p.71 / Chapter 3.3 --- Stability Analysis --- p.83 / Chapter 3.3.1 --- Stability analysis of network throughput --- p.83 / Chapter 3.3.2 --- Stability analysis of queueing delay --- p.91 / Chapter 3.4 --- Conclusion --- p.96 / Chapter Chapter 4 --- Performance Analysis of IEEE 802.15.4 Beacon-Enabled Mode --- p.97 / Chapter 4.1 --- Introduction --- p.98 / Chapter 4.1.1 --- Principle of IEEE 802.15.4 protocols --- p.98 / Chapter 4.1.2 --- Historical background of IEEE 802.15.4 --- p.101 / Chapter 4.1.3 --- Contributions of our works --- p.103 / Chapter 4.2 --- Queuing Model of Input Buffer for IEEE 802.15.4 --- p.105 / Chapter 4.2.1 --- Queuing model of input buffer --- p.106 / Chapter 4.2.2 --- Stable conditions of exponential backoff --- p.113 / Chapter 4.3 --- Analysis of Uplink Traffic without Acknowledgement --- p.116 / Chapter 4.4 --- Analysis of Acknowledged Uplink Traffic --- p.122 / Chapter 4.5 --- Analysis of Power Consumption of Each Node --- p.127 / Chapter 4.5.1 --- Power consumption of non-acknowledgement mode --- p.129 / Chapter 4.5.2 --- Power consumption of acknowledgement mode --- p.130 / Chapter 4.6 --- Simulation and Numerical Results --- p.132 / Chapter 4.7 --- Conclusion --- p.137 / Chapter Chapter 5 --- Summary and Future Works --- p.139 / Chapter 5.1 --- Contribution Summary --- p.140 / Chapter 5.2 --- Future Works --- p.142 / Chapter Appendix A --- Service Time Distribution for the Ideal 802.11 DCF with Exponential Backoff --- p.145 / Chapter Appendix B --- Throughput of802.11 DCF with Window-Based Backoff Scheme --- p.146 / Chapter Appendix C --- Service Time Distribution for the 802.11 DCF under Error-Prone Channels with Exponential Backoff --- p.147 / Chapter Appendix D --- Service Time Distribution for the IEEE 802.15.4 with Exponential Backoff --- p.150 / Bibliography --- p.151
253

Pricing communication networks: optimality and Incentives. / CUHK electronic theses & dissertations collection

January 2012 (has links)
網絡定價是一個基于對網絡技術和微觀經濟學深刻理解而產生和發展的交叉學科。其目標在於通過合理分配稀缺的網絡資源以滿足不同用戶的服務質量,同時又兼顧考慮對網絡中各個不同實體的相應激勵,以而實現令人滿意的網絡性能。適宜的定價設計在通訊網絡的運營和管理中都是必不可缺的。在本論文中,我們將網絡定價分為四類:面向優化的靜態定價、面向優化的動態定價、利潤驅動的靜態定價,和利潤驅動的動態定價。第一類定價問題已經在文獻中深入討論,本論文將集中討論後三類定價問題。對于每一類定價問題,我們將通過一個網絡定價設計實例來闡明定價設計中的關鍵挑戰與深刻見解。 / 首先,我們研究了利潤驅動的靜態定價。我們考慮了一個壟斷型的網絡運營商的利潤最大化問題,討論其如何設計激勵相容的價格,主人而使得有限的網絡資源在不同類型用戶間合理地分配。我們通過完全信息和非完全信息下的雙層斯塔伯格博博弈模型來建模刻畫運營商和用戶之間的相互作用。在完全信息下,我們研究了三種定價策略:完全價格分化、部分價格分化,和無價格分化。我們分析了這些不同定價策略在系統性能和複雜度之間的權衡關係。在不完全信息下,我們展示了設計價格分化策略的可能性,並且給出這種激勵相容的定份策略能使運營商獲得完全信息下價格分化定價策略所獲得之相同收益的充分必要條件。 / 接著,我們研究了利潤驅動的動態定價。我們考慮了一個認知網絡虛擬移動網絡運營商的資源分配勻利潤最大化的一般問題。認知網絡的動態性包括動態的用戶需求、不穩定的檢測頻譜資源、動態的頻譜租用價格,以及時變的無線信道條件。另外,為使網絡模型更接近于現實,我們還考慮了多用戶差異性和有缺陷的頻譜檢測技術。我們設計和展了一套低複雜度的在線控制策略,能夠在不知動態網絡參數的統計特性的情況下,確定定價和資源分配。我們證明這套動態定價的算法在適當權衡網絡延時的條件下,可以無限趨近最大利潤。 / 最後,我們研究了面向優化的動態定價。我們考慮一個節點容量受限的拓撲時變的多播網絡。通過運用網絡編碼,我們設計了一套動態定價策略可以分佈式地實現無限趨近最優的網絡性能。另外,我們證明這套算法是激勵相容的. 即無論節點在網絡中充當任何角色,該算法都可以保證該節點獲得非負的收益。這個結果表明,該算法可以給網絡節點提供有效的激勵,使之加入網絡、停留在網絡中,並且即使在沒有自身感興趣內容時,也願意充當其他節點的中繼,這一結果在多用戶的節點容量受限網絡(如P2P 網絡)的構建中有著重要的現實意義。 / 以上本論文推導之結果都展示了網絡定價在通訊網絡中的重要意義。尤其顯示了網絡定價是實現最優網絡性能,同時對各網絡實體提供激勵的有效工具。本論文不僅幫助我們更好地理解網絡定價問題,同時也給出網絡定價設計中的深刻見解。 / Network pricing is a cross-disciplinary research area, which requires deep understanding of both networking technology and microeconomics. The goal of network pricing is to achieve satisfied network performances by allocating the scarce resource to satisfy different users’ qualities of services while keeping in mind the incentives of different network entities. Proper design of pricing schemes is indispensable to the operation and management of communication networks. In this thesis we divide network pricing into four categories: static optimization-oriented pricing, dynamic optimization-oriented pricing, static profit-driven pricing, and dynamic profit-driven pricing. The first one is well studied in the literature, and our focus will be on the latter three categories. For each category, we illustrate the key design challenges and insights through a concrete networking example. / First, we investigate the issue of static profit-driven pricing. We consider a revenue maximization problem for a monopolist service provider, and discuss how to set incentive-compatible prices to induce proper allocation of limited resources among different types of users. We capture the interaction between the service provider and users through a two-stage Stackelberg game with both complete and incomplete information. With complete information, we study three pricing schemes: complete price differentiation, partial price differentiation, and no price differentiation. We characterize the trade-offs between the performance and complexity of different schemes. With incomplete information, we show that it is still possible to realize price differentiation, and provide the sufficient and necessary condition under which an incentive compatible price differentiation scheme can achieve the same revenue as the best scheme with complete information. / Then we investigate the issue of dynamic profit-driven pricing. We consider a general resource allocation and profit maximization problem for a cognitive virtual mobile network operator. Dynamics of the cognitive radio network include dynamic user demands, unstable sensing spectrum resources, dynamic spectrum prices, and time-varying channel conditions. In addition, we also consider multiuser diversity and imperfect sensing technique so that the network model is more realistic. We develop a low-complexity on-line control policy that determines pricing and resource scheduling without knowing the statistics of dynamic network parameters. We show that the proposed algorithm with dynamic pricing can achieve arbitrarily close to the optimal profit with a proper trade-off with the queuing delay. / We later investigate the issue of dynamic optimization-oriented pricing. We consider a node-capacitated multicast network with time-varying topology. By utilizing network coding, we design a dynamic pricing scheme that can achieve arbitrarily close to maximum network utility in a distributed fashion, while maintaining network stability. Moreover, we show that this algorithm is incentivecompatible, i.e., no matter what role a node plays in the network, the algorithm guarantees that the node has a non-negative profit. This result has practical importance for constructions for node-capacitated networks with multiple individual users (e.g., P2P networks), since it provides the proper incentives for individual nodes to join, stay, and contribute as relays in the network even if they have no interested contents. / The results developed in this thesis highlight the importance of pricing in communication networks. Specifically, our results show that pricing can be used as an effective tool to achieve optimal network performances while providing proper incentives for all network entities. This not only helps us better understand network pricing, but also gives us insights on the design of network pricing schemes. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Li, Shuqin. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2012. / Includes bibliographical references (leaves 155-168). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese. / Abstract --- p.i / Acknowledgement --- p.vi / Contents --- p.viii / List of Figures --- p.xii / List of Tables --- p.xv / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Pricing Schemes in Communication Networks --- p.3 / Chapter 1.2 --- Two Main Algorithm Design Techniques --- p.5 / Chapter 1.2.1 --- Network Utility Maximization --- p.5 / Chapter 1.2.2 --- Lyapunov Stochastic Optimization --- p.7 / Chapter 1.3 --- Thesis Outline --- p.10 / Chapter 2 --- Price Differentiation for Communication Networks --- p.13 / Chapter 2.1 --- Usage-based Pricing Schemes --- p.14 / Chapter 2.2 --- System Model --- p.17 / Chapter 2.3 --- Complete Price Differentiation under complete information --- p.20 / Chapter 2.3.1 --- User’s Surplus Maximization Problem in Stage 2 --- p.20 / Chapter 2.3.2 --- Service Provider’s Pricing and Admission Control Problem in Stage 1 --- p.20 / Chapter 2.3.3 --- Properties --- p.25 / Chapter 2.4 --- Single Pricing Scheme --- p.26 / Chapter 2.4.1 --- Problem Formulation and Solution --- p.27 / Chapter 2.4.2 --- Properties --- p.28 / Chapter 2.5 --- Partial Price Differentiation under Complete Information --- p.32 / Chapter 2.5.1 --- Three-level Decomposition --- p.33 / Chapter 2.5.2 --- Solving Level-2 and Level-3 --- p.36 / Chapter 2.5.3 --- Solving Level-1 --- p.39 / Chapter 2.6 --- Price Differentiation under Incomplete Information --- p.43 / Chapter 2.6.1 --- Extensions to Partial Price Differentiation under Incomplete Information --- p.48 / Chapter 2.7 --- Connections with the Classical Price Differentiation Taxonomy --- p.49 / Chapter 2.8 --- Numerical Results --- p.50 / Chapter 2.8.1 --- When is price differentiation most beneficial? --- p.50 / Chapter 2.8.2 --- What is the best tradeoff of Partial Price Differentiation? --- p.56 / Chapter 2.9 --- Summary --- p.58 / Chapter 2.10 --- Appendix of Chapter 2 --- p.59 / Chapter 2.10.1 --- Complete Price Differentiation under complete information with General Utility Functions --- p.59 / Chapter 2.10.2 --- Proof of Proposition 2.1 --- p.64 / Chapter 2.10.3 --- Proof of Lemma 2.2 --- p.65 / Chapter 2.10.4 --- Proof of Theorem 2.4 --- p.66 / Chapter 2.10.5 --- Proof of Theorem 2.6 --- p.72 / Chapter 3 --- Profit Maximization of Cognitive Mobile Virtual Network Operator in A DynamicWireless Network --- p.73 / Chapter 3.1 --- Dynamic Spectrum Access --- p.74 / Chapter 3.2 --- Related Work --- p.77 / Chapter 3.3 --- System Model --- p.79 / Chapter 3.3.1 --- Imperfect Spectrum Sensing --- p.81 / Chapter 3.3.2 --- Collision Constraint --- p.82 / Chapter 3.3.3 --- Spectrum Leasing with Dynamic Market Price --- p.82 / Chapter 3.3.4 --- Power Allocation --- p.83 / Chapter 3.3.5 --- Demand Model --- p.84 / Chapter 3.3.6 --- Queuing dynamics --- p.86 / Chapter 3.4 --- Problem Formulation --- p.87 / Chapter 3.5 --- Profit Maximization Control (PMC) Policy --- p.89 / Chapter 3.5.1 --- Lyapunov stochastic optimization --- p.89 / Chapter 3.5.2 --- Profit Maximization Control (PMC) policy --- p.93 / Chapter 3.5.3 --- Algorithms for Cost Minimization Problem --- p.96 / Chapter 3.5.4 --- Performance of the PMC Policy --- p.101 / Chapter 3.5.5 --- Extension: More General Model of Primary Users’ Activities --- p.102 / Chapter 3.6 --- Heterogeneous Users --- p.104 / Chapter 3.6.1 --- Multi-queue Profit Maximization Control (M-PMC) Policy --- p.106 / Chapter 3.6.2 --- Performance of the M-PMC Policy --- p.111 / Chapter 3.7 --- Simulation --- p.112 / Chapter 3.8 --- Summary --- p.116 / Chapter 3.9 --- Appendix of Chapter 3 --- p.118 / Chapter 3.9.1 --- (Waterfilling) Power Allocation Algorithm --- p.118 / Chapter 3.9.2 --- Threshold Searching Algorithm --- p.118 / Chapter 3.9.3 --- Proof for Theorem 3.2 (a) --- p.119 / Chapter 3.9.4 --- Proof for Theorem 3.2 (b) --- p.121 / Chapter 3.9.5 --- Impact of Queueing on Revenue Maximization --- p.123 / Chapter 4 --- Distributed Resource Allocation for Node-Capacitated Networks with Network Coding --- p.126 / Chapter 4.1 --- Node-Capacitated Networks --- p.126 / Chapter 4.2 --- Network Model --- p.132 / Chapter 4.2.1 --- Time-varying network topology and node upload capacities --- p.132 / Chapter 4.2.2 --- Multicast with intra-session network coding --- p.133 / Chapter 4.3 --- Stochastic Network Utility Maximization Problem --- p.135 / Chapter 4.4 --- Low Complexity Distributed Algorithm --- p.138 / Chapter 4.5 --- Performance Analysis --- p.141 / Chapter 4.5.1 --- Network Stability --- p.141 / Chapter 4.5.2 --- Network Utility Maximization --- p.143 / Chapter 4.5.3 --- The Incentives Issue --- p.146 / Chapter 4.6 --- Summary --- p.150 / Chapter 5 --- Conclusion --- p.151 / Chapter 5.1 --- Extensions on Static Profit-driven Pricing --- p.152 / Chapter 5.2 --- Extensions on Dynamic Profit-driven Pricing --- p.153 / Chapter 5.3 --- Extensions on Dynamic Optimization-oriented Pricing --- p.153 / Bibliography --- p.155
254

Photonic integrated circuits for high speed sub-terahertz wireless communications

Yang, Zhen January 2015 (has links)
No description available.
255

MEMS resonators for low power wireless communications and timing applications

Erbes, Andreja January 2015 (has links)
No description available.
256

Goal programming approach for channel assignment formulation and schemes.

January 2005 (has links)
Ng Cho Yiu. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (leaves 70-74). / Abstracts in English and Chinese. / Abstract --- p.i / Acknowledgement --- p.iii / Preface --- p.x / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Multiple Access --- p.1 / Chapter 1.1.1 --- Time Division Multiple Access --- p.2 / Chapter 1.1.2 --- Frequency Division Multiple Access --- p.3 / Chapter 1.1.3 --- Code Division Multiple Access --- p.3 / Chapter 1.1.4 --- Hybrid Multiple Access Scheme --- p.4 / Chapter 1.2 --- Goal Programming --- p.5 / Chapter 2 --- Previous Works in Channel Assignment --- p.10 / Chapter 2.1 --- Voice Service Network --- p.10 / Chapter 2.2 --- Data Network --- p.11 / Chapter 2.2.1 --- Throughput Optimization --- p.13 / Chapter 2.2.2 --- Channel Assignment Schemes with QoS Consideration --- p.14 / Chapter 3 --- General Channel Assignment Scheme --- p.16 / Chapter 3.1 --- Baseline Model --- p.17 / Chapter 3.2 --- Goal Ranking --- p.22 / Chapter 3.3 --- Model Transformation --- p.22 / Chapter 3.4 --- Proposed Algorithms --- p.23 / Chapter 3.4.1 --- Channel Swapping Algorithm --- p.24 / Chapter 3.4.2 --- Best-First-Assign Algorithm --- p.26 / Chapter 4 --- Special Case Algorithms --- p.28 / Chapter 4.1 --- Single Order of Selection Diversity --- p.28 / Chapter 4.1.1 --- System Model --- p.29 / Chapter 4.1.2 --- Proposed Algorithm --- p.30 / Chapter 4.1.3 --- Extension of Algorithm --- p.31 / Chapter 4.2 --- Single Channel Assignment --- p.32 / Chapter 4.2.1 --- System Model --- p.33 / Chapter 4.2.2 --- Proposed Algorithms --- p.34 / Chapter 5 --- Performance Evaluation --- p.37 / Chapter 5.1 --- General Channel Assignment and Single Channel Assignment --- p.37 / Chapter 5.1.1 --- System Model --- p.38 / Chapter 5.1.2 --- Lower Bound of Weighted Sum of Unsatisfactory Function --- p.40 / Chapter 5.1.3 --- Performance Evaluation I --- p.41 / Chapter 5.1.4 --- Discussion --- p.44 / Chapter 5.1.5 --- Performance Evaluation II --- p.44 / Chapter 5.2 --- Single Order of Selection Diversity Algorithm --- p.47 / Chapter 5.2.1 --- System Model --- p.47 / Chapter 5.2.2 --- Performance Evaluation I --- p.49 / Chapter 5.2.3 --- Performance Evaluation II --- p.53 / Chapter 6 --- Conclusion and Future Works --- p.58 / Chapter 6.1 --- Conclusion --- p.58 / Chapter 6.2 --- Future Works --- p.60 / Chapter 6.2.1 --- Multi-cell Channel Assignment --- p.60 / Chapter 6.2.2 --- Theoretical Studies --- p.62 / Chapter 6.2.3 --- Adaptive Algorithms --- p.62 / Chapter 6.2.4 --- Assignment of Non-orthogonal Channels --- p.63 / Chapter A --- Proof of Proposition 3.1 --- p.64 / Chapter B --- Proof of Proposition 4.1 --- p.66 / Chapter C --- Assignment Problem --- p.68 / Bibliography --- p.74
257

A multilayeredly rolled inverted-F antenna for dual-band mobile phones.

January 2008 (has links)
Lam, Fuk Ming. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references. / Abstracts in English and Chinese. / Abstract --- p.I / Acknowledgements --- p.V / Table of Contents --- p.VI / List of Figures --- p.IX / List of Tables --- p.XVI / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Background --- p.1 / Chapter 1.2 --- Overview of the Work --- p.5 / Chapter 1.3 --- Original contribution of this thesis --- p.6 / Chapter 1.4 --- Organization of this thesis --- p.7 / Chapter 1.5 --- Remarks on frequency dependent parameters in this thesis --- p.8 / Reference --- p.9 / Chapter Chapter 2 --- Small Antennas for mobile phone applications --- p.10 / Chapter 2.1 --- Introduction --- p.10 / Chapter 2.2 --- Definitions --- p.11 / Chapter 2.2.1 --- Quality factor --- p.11 / Chapter 2.2.2 --- Efficiency --- p.12 / Chapter 2.2.3 --- Return Loss and impedance bandwidth --- p.12 / Chapter 2.2.4 --- Antenna gain and radiation pattern --- p.13 / Chapter 2.3 --- Fundamental limitations of small antenna --- p.14 / Chapter 2.4 --- Low-profile and Dual-band techniques --- p.16 / Chapter 2.4.1 --- Inverted-L/F and Planar Inverted-F Antenna --- p.16 / Chapter 2.4.2 --- Dual-band PIFA --- p.21 / Chapter 2.4.3 --- Discussion on miniaturization of mobile phone antenna --- p.23 / Chapter 2.5 --- Ground plane effect of mobile phone antenna --- p.26 / Chapter 2.5.1 --- Optimal location to excite antenna over a finite ground plane --- p.26 / Chapter 2.5.2 --- Dependence of resonant frequency and impedance bandwidth on ground plane length --- p.27 / Chapter 2.5.3 --- Dual-resonator model for mobile phone antenna --- p.32 / Chapter 2.6 --- Summary --- p.38 / Reference --- p.38 / Chapter Chapter 3 --- A Multilayeredly Rolled Inverted-F Antenna for Dual-band Mobile Phones --- p.42 / Chapter 3.1 --- Introduction --- p.42 / Chapter 3.2 --- Literature review on rolled antennas --- p.43 / Chapter 3.3 --- Proposed MRIFA --- p.47 / Chapter 3.3.1 --- Antenna configuration --- p.47 / Chapter 3.3.2 --- Simulation studies --- p.51 / Chapter 3.3.3 --- Prototype and Experimental results --- p.59 / Chapter 3.3.4 --- Comparison with a reference PIFA --- p.66 / Chapter 3.4 --- Mobile phone installed with the MRIFA --- p.70 / Chapter 3.5 --- Summary --- p.80 / Reference --- p.81 / Chapter Chapter 4 --- A fast method to evaluate Total Isotropic Sensitivity (TIS) in mobile phone active measurement --- p.82 / Chapter 4.1 --- Introduction --- p.82 / Chapter 4.2 --- Proposed fast method for TIS evaluation --- p.85 / Chapter 4.2.1 --- Observed relationship between total Effective Isotropic Radiated Power (EIRP) and total Effective Isotropic Sensitivity (EIS) --- p.85 / Chapter 4.2.2 --- EIS's estimation from EIRPs for TIS evaluation --- p.89 / Chapter 4.3 --- Summary --- p.92 / Reference --- p.93 / Chapter Chapter 5 --- Conclusion --- p.94 / List of Publications --- p.96 / Appendix A - Details of sample mobile phones investigated in this thesis research --- p.97 / Appendix B - Active measurement of mobile phone's transmit power and receiver sensitivity --- p.107 / Appendix C - MRIFA realization procedure --- p.118
258

QoS-aware adaptive call admission control in multiuser OFDM wireless network.

January 2008 (has links)
Yu, Xi. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references (leaves 46-49). / Abstracts in English and Chinese. / Acknowledgement --- p.i / Abstract --- p.ii / Chapter Chapter 1 --- Introduction and Background --- p.1 / Chapter 1.1 --- Background --- p.3 / Chapter 1.1.1 --- Brief Review of CAC --- p.3 / Chapter 1.1.2 --- Dynamic Sub-carrier Allocation in Multi-user OFDM Wireless Network --- p.6 / Chapter 1.2 --- Problem Statement --- p.11 / Chapter 1.3 --- The Organization of The Thesis --- p.12 / Chapter Chapter2 --- System Model and Call Admission Control Framework --- p.13 / Chapter 2.1 --- System setup --- p.13 / Chapter 2.2 --- The CAC Strategy Framework --- p.14 / Chapter Chapter 3 --- QoS-aware Adaptive Call Admission Control´ؤStep One: The QoS-Provisioning CAC --- p.18 / Chapter 3.1 --- Problem Formulation --- p.19 / Chapter 3.2 --- Optimal Condition Analysis --- p.21 / Chapter 3.3 --- Throughput Estimation Algorithm --- p.22 / Chapter 3.4 --- QoS-Provisioning CAC --- p.25 / Chapter 3.5 --- Performance Evaluation --- p.26 / Chapter Chapter 4 --- QoS-aware Adaptive Call Admission Control´ؤStep Two: Average Revenue Maximization CAC --- p.30 / Chapter 4.1 --- Semi-Markov Decision Process --- p.30 / Chapter 4.2 --- Investigation of Algorithms for SMDP --- p.34 / Chapter 4.3 --- The Average Revenue Maximum CAC --- p.37 / Chapter 4.4 --- Performance Evaluation --- p.40 / Chapter Chapter 5 --- Conclusion and Future Work --- p.44 / Bibliography --- p.46
259

On algorithms, system design, and implementation for wireless mesh networks.

January 2008 (has links)
Yuan, Yan. / Thesis submitted in: November 2007. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references (leaves 84-87). / Abstracts in English and Chinese. / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Wireless Mesh Network --- p.3 / Chapter 1.1.1 --- Architecture Overview --- p.3 / Chapter 1.1.2 --- Routing Protocols --- p.5 / Chapter 1.2 --- Contribution of this Thesis --- p.7 / Chapter 1.3 --- Organization of this Thesis --- p.8 / Chapter 2 --- Background and Literature Review --- p.9 / Chapter 2.1 --- VoIP on Wireless Mesh Networks --- p.9 / Chapter 2.1.1 --- Performance of VoIP on Wireless Mesh Networks --- p.9 / Chapter 2.1.2 --- Optimizations for VoIP over Wireless Mesh Networks --- p.12 / Chapter 2.1.3 --- Path and Packet Aggregation Scheme --- p.14 / Chapter 2.2 --- Network Coding on Wireless Mesh Networks --- p.15 / Chapter 2.2.1 --- The Concept of Network Coding --- p.15 / Chapter 2.2.2 --- Related Work --- p.16 / Chapter 3 --- Adaptive Path and Packet Aggregation System --- p.19 / Chapter 3.1 --- Overview --- p.19 / Chapter 3.2 --- The Adaptive Path Aggregation Routing Algorithm --- p.20 / Chapter 3.2.1 --- Protocol Overview --- p.20 / Chapter 3.2.2 --- Data Structure --- p.21 / Chapter 3.2.3 --- The Concept of Link Weight and Path Weight --- p.26 / Chapter 3.2.4 --- APA Operations --- p.27 / Chapter 3.3 --- The Packet Aggregation System --- p.39 / Chapter 3.3.1 --- Overview --- p.39 / Chapter 3.3.2 --- Packet structure --- p.40 / Chapter 3.3.3 --- Local Compression --- p.41 / Chapter 3.3.4 --- Packet Aggregation/Disaggregation --- p.42 / Chapter 3.4 --- Performance Analysis --- p.44 / Chapter 3.4.1 --- Integration of the path aggregation routing protocol and the packet aggregation system --- p.46 / Chapter 3.5 --- Performance Evaluation --- p.48 / Chapter 3.5.1 --- Testbed Setup --- p.48 / Chapter 3.5.2 --- Packet aggregation --- p.48 / Chapter 3.5.3 --- Combined scenario: path and packet aggregation --- p.58 / Chapter 3.6 --- Summary --- p.65 / Chapter 4 --- Network Coding System in wireless network --- p.67 / Chapter 4.1 --- Overview --- p.67 / Chapter 4.2 --- System Architecture --- p.68 / Chapter 4.2.1 --- Packet Format --- p.68 / Chapter 4.2.2 --- Encoding and decoding --- p.69 / Chapter 4.3 --- Performance Evaluation --- p.71 / Chapter 4.3.1 --- Experiment Setup --- p.71 / Chapter 4.3.2 --- Performance Metric --- p.72 / Chapter 4.3.3 --- Experiment Results --- p.72 / Chapter 4.4 --- Summary --- p.79 / Chapter 5 --- Conclusions and Future Directions --- p.82
260

Communicating at Terahertz Frequencies

Moshirfatemi, Farnoosh 24 May 2017 (has links)
The number of users who get access to wireless links is increasing each day and many new applications require very high data rates. The increasing demand for higher data rates has led to the development of new techniques to increase spectrum efficiency to achieve this goal. However, the limited bandwidth of the frequency bands that are currently used for wireless communication bounds the maximum data rate possible. In the past few years, researchers have developed new devices that work as Terahertz (THz) transmitters and receivers. The development of these devices and the large available bandwidth of the THz band is a possible solution to this ever increasing demand. However, THz communication is still in its infancy and more research needs to be done to bring THz technology into every day life. In this research, we study wireless THz communication systems. As the first step, we conducted detailed channel measurements to study and analyze the characteristics of THz signals under different channel conditions. These propagation models mimic the behavior of THz signals in real applications. Then we use these models to study appropriate modulation methods for directional and omni-directional THz channels. We also use pulsed THz signals in wireless communication channels to send data at a very high rate. We have developed rate adaptation algorithms to allow multiple users to share the same THz channel for downlink applications while fairness is maintained among them.

Page generated in 0.1776 seconds