Spelling suggestions: "subject:"aireless delay"" "subject:"fireless delay""
1 |
Analysis and Improvement of Achievable Data Rates in Multi-Way Relay ChannelsNoori, Moslem Unknown Date
No description available.
|
2 |
Parameter Estimation and Tracking in Physical Layer Network CodingJain, Manish 2011 May 1900 (has links)
Recently, there has been a growing interest in improving the performance of the wireless relay networks through the use of Physical Layer Network Coding (PLNC) techniques. The physical layer network coding technique allows two terminals to transmit simultaneously to a relay node and decode the modulo-2 sum of the transmitted bits at the relay. This technique considerably improves performance over Digital Network Coding technique.
In this thesis, we will present an algorithm for joint decoding of the modulo-2 sum of bits transmitted from two unsynchronized transmitters at the relay. We shall also address the problems that arise when boundaries of the signals do not align with each other and when the channel parameters are slowly varying and are unknown to the receiver at the relay node. Our approach will first jointly estimate the timing o sets and fading gains of both signals using a known pilot sequence sent by both
transmitters in the beginning of the packet and then perform Maximum Likelihood detection of data using a state-based Viterbi decoding scheme that takes into account the timing o sets between the interfering signals. We shall present an algorithm for simultaneously tracking the amplitude and phase of slowly varying wireless channel
that will work in conjunction our Maximum Likelihood detection algorithm. Finally, we shall provide extension of our receiver to support antenna diversity.
Our results show that the proposed detection algorithm works reasonably well, even with the assumption of timing misalignment. We also demonstrate that the performance of the algorithm is not degraded by amplitude and/or phase mismatch between the users. We further show that the performance of the channel tracking algorithm is close to the ideal case i.e. when the channel estimates are perfectly known. Finally, we demonstrate the performance boost provided by the receiver antenna diversity.
|
3 |
Layered Video Multicast Using Fractional Frequency Reuse over Wireless Relay NetworksChen, Ying-Tsuen 27 September 2011 (has links)
Multimedia services over wireless networks are getting popular. With multicast
many mobile stations can join the same video multicast group and share the same radio
resource to increase frequency utilization efficiently. However users may locate at
different positions so as to suffer different path loss, interference and receive different
signal to interference and noise ratio (SINR). Users at the cell-edge receiving lower
SINR may degrade the multicast efficiency. In this thesis we propose four schemes
considering fractional frequency reuse (FFR) over relay networks to reuse frequency in
multi-cells. With fractional frequency reuse, users close to the base station (BS) have
more resources to improve the total frequency utilization. A resource allocation scheme
is also proposed to efficiently allocate wireless resources. Compared to the
conventional relay scheme, the proposed schemes can provide more than 10% video
layers for all users and give better video quality for users near BS.
|
4 |
Multi-Decision Handover Mechanism for Fractional Frequency Reuse in Relay NetworksLai, Hsin-Hung 03 December 2012 (has links)
With the popularity of wireless networks, it needs to support user¡¦s mobility cross different base stations, hence, the handover mechanism becomes an important issue. When the user frequently moves between two cells, it will occur the Ping-Pong effect that increases the delay time and reduces the efficiency of system. In this thesis, we proposed a new handover mechanism by considering the fractional frequency reuse (FFR) over relay networks to reuse frequency in multi-cells. The proposed method can reduce the unnecessary handover caused by the interference in the system of FFR. It uses the value of signal to interference and noise ratio (SINR) and the parameter of distance to make handover decision. The simulation results indicate the proposed handover mechanism can reduce more than 8% of the handover number in average in comparison to the competing method in the best case.
|
5 |
Coding for Relay Networks with Parallel Gaussian ChannelsHuang, Yu-Chih 03 October 2013 (has links)
A wireless relay network consists of multiple source nodes, multiple destination nodes, and possibly many relay nodes in between to facilitate its transmission. It is clear that the performance of such networks highly depends on information for- warding strategies adopted at the relay nodes. This dissertation studies a particular information forwarding strategy called compute-and-forward. Compute-and-forward is a novel paradigm that tries to incorporate the idea of network coding within the physical layer and hence is often referred to as physical layer network coding. The main idea is to exploit the superposition nature of the wireless medium to directly compute or decode functions of transmitted signals at intermediate relays in a net- work. Thus, the coding performed at the physical layer serves the purpose of error correction as well as permits recovery of functions of transmitted signals.
For the bidirectional relaying problem with Gaussian channels, it has been shown by Wilson et al. and Nam et al. that the compute-and-forward paradigm is asymptotically optimal and achieves the capacity region to within 1 bit; however, similar results beyond the memoryless case are still lacking. This is mainly because channels with memory would destroy the lattice structure that is most crucial for the compute-and-forward paradigm. Hence, how to extend compute-and-forward to such channels has been a challenging issue. This motivates this study of the extension of compute-and-forward to channels with memory, such as inter-symbol interference.
The bidirectional relaying problem with parallel Gaussian channels is also studied, which is a relevant model for the Gaussian bidirectional channel with inter-symbol interference and that with multiple-input multiple-output channels. Motivated by the recent success of linear finite-field deterministic model, we first investigate the corresponding deterministic parallel bidirectional relay channel and fully characterize its capacity region. Two compute-and-forward schemes are then proposed for the Gaussian model and the capacity region is approximately characterized to within a constant gap.
The design of coding schemes for the compute-and-forward paradigm with low decoding complexity is then considered. Based on the separation-based framework proposed previously by Tunali et al., this study proposes a family of constellations that are suitable for the compute-and-forward paradigm. Moreover, by using Chinese remainder theorem, it is shown that the proposed constellations are isomorphic to product fields and therefore can be put into a multilevel coding framework. This study then proposes multilevel coding for the proposed constellations and uses multistage decoding to further reduce decoding complexity.
|
6 |
Full Duplex Relay ClustersChen, Lu 10 October 2019 (has links)
No description available.
|
7 |
Distributed space-time block coding in cooperative relay networks with application in cognitive radioAlotaibi, Faisal T. January 2012 (has links)
Spatial diversity is an effective technique to combat the effects of severe fading in wireless environments. Recently, cooperative communications has emerged as an attractive communications paradigm that can introduce a new form of spatial diversity which is known as cooperative diversity, that can enhance system reliability without sacrificing the scarce bandwidth resource or consuming more transmit power. It enables single-antenna terminals in a wireless relay network to share their antennas to form a virtual antenna array on the basis of their distributed locations. As such, the same diversity gains as in multi-input multi-output systems can be achieved without requiring multiple-antenna terminals. In this thesis, a new approach to cooperative communications via distributed extended orthogonal space-time block coding (D-EO-STBC) based on limited partial feedback is proposed for cooperative relay networks with three and four relay nodes and then generalized for an arbitrary number of relay nodes. This scheme can achieve full cooperative diversity and full transmission rate in addition to array gain, and it has certain properties that make it alluring for practical systems such as orthogonality, flexibility, low computational complexity and decoding delay, and high robustness to node failure. Versions of the closed-loop D-EO-STBC scheme based on cooperative orthogonal frequency division multiplexing type transmission are also proposed for both flat and frequency-selective fading channels which can overcome imperfect synchronization in the network. As such, this proposed technique can effectively cope with the effects of fading and timing errors. Moreover, to increase the end-to-end data rate, this scheme is extended for two-way relay networks through a three-time slot framework. On the other hand, to substantially reduce the feedback channel overhead, limited feedback approaches based on parameter quantization are proposed. In particular, an optimal one-bit partial feedback approach is proposed for the generalized D-O-STBC scheme to maximize the array gain. To further enhance the end-to-end bit error rate performance of the cooperative relay system, a relay selection scheme based on D-EO-STBC is then proposed. Finally, to highlight the utility of the proposed D-EO-STBC scheme, an application to cognitive radio is studied.
|
8 |
Diversity Multiplexing Tradeoff and Capacity Results in Relayed Wireless NetworksOveis Gharan, Shahab January 2010 (has links)
This dissertation studies the diversity multiplexing tradeoff and the capacity of wireless multiple-relay network.
In part 1, we study the setup of the parallel Multi-Input Multi-Output (MIMO)
relay network. An amplify-and-forward relaying scheme, Incremental Cooperative
Beamforming, is introduced and shown to achieve the capacity of the network in
the asymptotic case of either the number of relays or the power of each relay goes to infinity.
In part 2, we study the general setup of multi-antenna multi-hop multiple- relay network. We propose a new scheme, which we call random sequential (RS), based on the amplify-and-forward relaying. Furthermore, we derive diversity- multiplexing tradeoff (DMT) of the proposed RS scheme for general single-antenna multiple-relay networks. It is shown that for single-antenna two-hop multiple- access multiple-relay (K > 1) networks (without direct link between the source(s) and the destination), the proposed RS scheme achieves the optimum DMT.
In part 3, we characterize the maximum achievable diversity gain of the multi- antenna multi-hop relay network and we show that the proposed RS scheme achieves the maximum diversity gain.
In part 4, RS scheme is utilized to investigate DMT of the general multi-antenna multiple-relay networks. First, we study the case of a multi-antenna full-duplex single-relay two-hop network, for which we show that the RS achieves the optimum DMT. Applying this result, we derive a new achievable DMT for the case of multi-antenna half-duplex parallel relay network. Interestingly, it turns out that the DMT of the RS scheme is optimum for the case of multi-antenna two parallel non-interfering half-duplex relays. Furthermore, we show that random unitary matrix multiplication also improves the DMT of the Non-Orthogonal AF relaying scheme in the case of a multi-antenna single relay channel. Finally, we study the general case of multi-antenna full-duplex relay networks and derive a new lower-bound on its DMT using the RS scheme.
Finally, in part 5, we study the multiplexing gain of the general multi-antenna multiple-relay networks. We prove that the traditional amplify-forward relaying achieves the maximum multiplexing gain of the network. Furthermore, we show that the maximum multiplexing gain of the network is equal to the minimum vertex cut-set of the underlying graph of the network, which can be computed in polynomial time in terms of the number of network nodes. Finally, the argument is extended to the multicast and multi-access scenarios.
|
9 |
Channel estimation and signal detection for wireless relayMa, Jun 15 November 2010 (has links)
Wireless relay can be utilized to extend signal coverage, achieve spatial diversity by user cooperation, or shield mobile terminals from adverse channel conditions over the direct link. In a two-hop multi-input-multi-output (MIMO) amplify-and-forward (AF) relay system, the overall noise at the destination station (DS) consists of the colored noise forwarded from the relay station (RS) and the local white noise. We propose blind noise correlation estimation at the DS by utilizing statistics of the broadband relay channel over the RS-DS hop, which effectively improves signal detection at the DS. For further
performance improvement, we also propose to estimate the two cascaded MIMO relay channels over the source-RS and the RS-DS links at the DS based on the overall channel between the source and the DS and the amplifying matrix applied at the RS. To cancel cross-talk interference at a channel-reuse-relay-station (CRRS), we utilize the random forwarded signals of the CRRS as equivalent pilots for local coupling channel estimation and achieve a much higher post signal-to-interference ratio (SIR) than the conventional
dedicated pilots assisted cancellers without causing any in-band interference at the DS. When an OFDM-based RS is deployed on a high-speed train to shield mobile terminals from the high Doppler frequency over the direct link, inter-subchannel interference (ICI) mitigation is required at the RS. By utilizing statistics of the channel between the base station and the train, we develop both full-rate and reduced-rate OFDM transmission with inherent ICI self-cancellation via transmit and/or receive preprocessing, which achieve significant performance improvement over the existing ICI self-cancellation schemes.
|
10 |
Diversity Multiplexing Tradeoff and Capacity Results in Relayed Wireless NetworksOveis Gharan, Shahab January 2010 (has links)
This dissertation studies the diversity multiplexing tradeoff and the capacity of wireless multiple-relay network.
In part 1, we study the setup of the parallel Multi-Input Multi-Output (MIMO)
relay network. An amplify-and-forward relaying scheme, Incremental Cooperative
Beamforming, is introduced and shown to achieve the capacity of the network in
the asymptotic case of either the number of relays or the power of each relay goes to infinity.
In part 2, we study the general setup of multi-antenna multi-hop multiple- relay network. We propose a new scheme, which we call random sequential (RS), based on the amplify-and-forward relaying. Furthermore, we derive diversity- multiplexing tradeoff (DMT) of the proposed RS scheme for general single-antenna multiple-relay networks. It is shown that for single-antenna two-hop multiple- access multiple-relay (K > 1) networks (without direct link between the source(s) and the destination), the proposed RS scheme achieves the optimum DMT.
In part 3, we characterize the maximum achievable diversity gain of the multi- antenna multi-hop relay network and we show that the proposed RS scheme achieves the maximum diversity gain.
In part 4, RS scheme is utilized to investigate DMT of the general multi-antenna multiple-relay networks. First, we study the case of a multi-antenna full-duplex single-relay two-hop network, for which we show that the RS achieves the optimum DMT. Applying this result, we derive a new achievable DMT for the case of multi-antenna half-duplex parallel relay network. Interestingly, it turns out that the DMT of the RS scheme is optimum for the case of multi-antenna two parallel non-interfering half-duplex relays. Furthermore, we show that random unitary matrix multiplication also improves the DMT of the Non-Orthogonal AF relaying scheme in the case of a multi-antenna single relay channel. Finally, we study the general case of multi-antenna full-duplex relay networks and derive a new lower-bound on its DMT using the RS scheme.
Finally, in part 5, we study the multiplexing gain of the general multi-antenna multiple-relay networks. We prove that the traditional amplify-forward relaying achieves the maximum multiplexing gain of the network. Furthermore, we show that the maximum multiplexing gain of the network is equal to the minimum vertex cut-set of the underlying graph of the network, which can be computed in polynomial time in terms of the number of network nodes. Finally, the argument is extended to the multicast and multi-access scenarios.
|
Page generated in 0.0631 seconds