Spelling suggestions: "subject:"aireless test"" "subject:"fireless test""
1 |
Efficient Alternate Test Generation for RF Transceiver ArchitecturesHalder, Achintya 03 May 2006 (has links)
The production testing cost of modern wireless communication systems, especially basestation units, is estimated to be as high as 30-40 percent of their manufacturing cost and is increasing with system complexity, high levels of device integration and scaling of CMOS process technology and operating frequencies. The major production testing challenges for RF transceivers are: (a) the high cost of automated test development because of system-level simulation difficulties and the large simulation times involved, (b) the high cost of using high-end, communication protocol-aware RF test instrumentation, and (c) lack of external test access to RF circuits embedded inside integrated transceivers. Consequently, there exists a need for developing efficient design-for-test methodologies and non-invasive system-level test techniques for wireless transceivers to reduce their test cost. This dissertation is focused towards development of new system-level alternate test methodologies for RF transceiver architectures. The research proposes using non-invasive testing techniques for RF subsystems and digital-compatible built-in testing techniques for baseband and intermediate frequency (IF) analog circuits. The objectives of this research are: (a) to develop automatic test stimulus generation algorithms that allow accurate determination of targeted RF system-level test specification values using behavioral modeling and simulation techniques, (b) to develop RF transceiver test techniques that allow testing of embedded RF systems with limited test access, while reducing the test time for complex RF and baseband system-level performance metrics (b) to significantly reduce the test instrumentation overhead for testing complex frequency-domain and modulation-domain system specifications. The feasibility and the cost benefits of using the proposed alternate test approaches have been demonstrated using 900 MHz and 1575 MHz transceiver prototypes.
|
2 |
Méthode de test sans fil en vue des SIP et des SOC / Wireless Approach for SIP and SOC TestingNoun, Ziad 05 March 2010 (has links)
Jusqu'à présent, le test de circuits intégrés et des systèmes au niveau wafer est basé sur un contact physique entre l'équipement de test et les circuits sur le wafer. Cette méthode basée sur le contact est limitée par plusieurs facteurs, tels que le nombre de circuits testés en parallèle, la réduction de la taille et de l'espacement entre les plots de contact, le nombre de contact avant que les plots soient endommagés, le coût des opérations de test, entre autres. Pour résoudre ces problèmes, nous proposons une nouvelle approche de test basée sur la communication sans fil entre le testeur et les circuits à tester (DUT). Pour cela, un Wireless Test Control Bloc (WTCB) est ajouté à chaque DUT sur le wafer comme une interface sans fil entre le testeur et les structures de test internes du DUT. Ce WTCB intègre une pile protocolaire de communication pour gérer la communication avec le testeur, et un Test Control Bloc (TCB) pour gérer l'application de test au niveau DUT. Profitant d'une transmission sans fil, le testeur peut diffuser les données de test à tous les DUT sur le wafer , maximisant le test simultané et réduisant donc le temps de test. En outre, notre architecture de WTCB permet une comparaison locale de la réponse de DUT avec la réponse correcte attendue par le testeur. En effectuant cette comparaison dans le WTCB du DUT, le testeur recueille de chaque DUT 1 seul bit comme résultat de la comparaison, au lieu d'une réponse complète, conduisant à un test sans fil plus rapide qui réduit le temps d'essai. Le WTCB a été mis en oeuvre sur FPGA, et une épreuve de test sans fil d'un circuit réel a été réalisée, prouvant la conception efficace de notre WTCB, et soulignant le potentiel de notre méthode de test sans fil, où elle peut être étendue et utilisée pour des applications de test in situ à distance. / So far, the test of integrated circuits and systems at wafer level relies on a physical contact between the test equipment and the devices under test on the wafer. This contact-based method is limited by several factors, such as the number of devices tested in parallel, the reduction of the size and the pitch of the bond pads, the number of touchdowns before bond pads are damaged, the cost of the test operations, among others. To solve these issues, we propose a novel test approach and architecture based on wireless communication between the tester and the devices under test (DUT). For that, a Wireless Test Control Block (WTCB) is added to every DUT on the wafer as a wireless interface between the tester and the internal test structures of the DUT. This WTCB embeds a communication protocol stack to manage the communication with the tester, and a Test Control Block to manage the test application at DUT level. Taking advantage of a wireless transmission, the tester can broadcast the test data to all DUT on the wafer in one path, maximizing the concurrent test, and reducing therefore the test time. Moreover, our WTCB architecture allows a local comparison of the DUT response with the correct response expected by the tester. By performing this comparison in the WTCB of the DUT, the tester collects from every DUT its 1-bit comparison result instead of a complete response, leading to a faster wireless test and extremely reduced test time. The WTCB has been implemented on FPGA, and a successful wireless test of a real circuit was performed, proving the efficient design of our WTCB, and highlighting the potential of our wireless test method, where it can be extended and used to perform a remote in-situ test.
|
Page generated in 0.0735 seconds