• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 752
  • 202
  • 109
  • 95
  • 38
  • 34
  • 22
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • Tagged with
  • 1515
  • 1515
  • 1024
  • 553
  • 283
  • 223
  • 200
  • 194
  • 193
  • 182
  • 178
  • 169
  • 158
  • 158
  • 150
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Determination of Cycle Time Constraints in Case of Link Failure in Closed Loop Control in Internet of Things

Ainchwar, Arpit January 2017 (has links)
In today’s era of the Internet of Things, it is crucial to study the real-time dependencies of the web, its failures and time delays. Today, smart grids, sensible homes, wise water networks, intelligent transportation, infrastructure systems that connect our world over are developing fast. The shared vision of such systems is typically associated with one single conception Internet of Things (IoT), where through the deployment of sensors, the entire physical infrastructure is firmly fastened with information and communication technologies; where intelligent observation and management is achieved via the usage of networked embedded devices. The performance of a real-time control depends not only on the reliability of the hardware and software used but also on the time delay in estimating the output, because of the effects of computing time delay on the control system performance. For a given fixed sampling interval, the delay and loss issues are the consequences of computing time delay. The delay problem occurs when the computing time delay is non-zero but smaller than the sampling interval, while the loss problem occurs when the computing time delay is greater than, or equal to, the sampling interval, i.e., loss of the control output. These two queries are analyzed as a means of evaluating real-time control systems. First, a general analysis of the effects of computing time delay is presented along with necessary conditions for system stability. In this thesis, we will focus on the experimental study of the closed loop control system in the internet of things to determine the cycle time constraints in case of link failure.
72

Energy Efficient Clustering Algorithms for Homogeneous Wireless Sensor Networks

Corn, John Robert 06 May 2017 (has links)
Wireless sensor networks (WSNs) are systems of resource-constrained sensor nodes (SNs), distributed throughout a sensor field. Energy limitations persist due to the wireless nature of SNs and an interest in minimizing the cost and physical footprint of SNs. Due to the resource-constrained nature of SNs, much WSN research has focused on energy-efficient communication algorithms. Communication algorithms are necessary for energy-efficient data transmission between SNs and the transmission of data collected by SNs to a base station. A popular algorithm known as Low-Energy Adaptive Clustering Hierarchy (LEACH) achieves more energy-efficient communication by organizing SNs into clusters for localized communication. When SNs are mobile, the energy efficiency of LEACH is degraded because of geographic dispersion of SN clusters. This thesis proposes LEACH-Centered Cluster-head (LEACH-CCH), a clustering algorithm aimed at improving WSN lifetime in cases of stationary and mobile sensor nodes. Mobile sensor network applications are explored including vehicle-to-infrastructure communication networks.
73

A Geometric Tiling Algorithm for Approximating Minimal Covering Sets

Martinez, Adam P. 15 December 2011 (has links)
No description available.
74

On deployment and security in mobile wireless sensor networks

Chellappan, Sriram 10 December 2007 (has links)
No description available.
75

Using genetic algorithms to optimise wireless sensor network design

Fan, Jin January 2009 (has links)
Wireless Sensor Networks(WSNs) have gained a lot of attention because of their potential to immerse deeper into people' lives. The applications of WSNs range from small home environment networks to large habitat monitoring. These highly diverse scenarios impose different requirements on WSNs and lead to distinct design and implementation decisions. This thesis presents an optimization framework for WSN design which selects a proper set of protocols and number of nodes before a practical network deployment. A Genetic Algorithm(GA)-based Sensor Network Design Tool(SNDT) is proposed in this work for wireless sensor network design in terms of performance, considering application-specific requirements, deployment constrains and energy characteristics. SNDT relies on offine simulation analysis to help resolve design decisions. A GA is used as the optimization tool of the proposed system and an appropriate fitness function is derived to incorporate many aspects of network performance. The configuration attributes optimized by SNDT comprise the communication protocol selection and the number of nodes deployed in a fixed area. Three specific cases : a periodic-measuring application, an event detection type of application and a tracking-based application are considered to demonstrate and assess how the proposed framework performs. Considering the initial requirements of each case, the solutions provided by SNDT were proven to be favourable in terms of energy consumption, end-to-end delay and loss. The user-defined application requirements were successfully achieved.
76

A Security Framework for Wireless Sensor Networks

Zia, Tanveer January 2008 (has links)
Doctor of Philosophy (PhD) / Sensor networks have great potential to be employed in mission critical situations like battlefields but also in more everyday security and commercial applications such as building and traffic surveillance, habitat monitoring and smart homes etc. However, wireless sensor networks pose unique security challenges. While the deployment of sensor nodes in an unattended environment makes the networks vulnerable to a variety of potential attacks, the inherent power and memory limitations of sensor nodes makes conventional security solutions unfeasible. Though there has been some development in the field of sensor network security, the solutions presented thus far address only some of security problems faced. This research presents a security framework WSNSF (Wireless Sensor Networks Security Framework) to provide a comprehensive security solution against the known attacks in sensor networks. The proposed framework consists of four interacting components: a secure triple-key (STKS) scheme, secure routing algorithms (SRAs), a secure localization technique (SLT) and a malicious node detection mechanism. Singly, each of these components can achieve certain level of security. However, when deployed as a framework, a high degree of security is achievable. WSNSF takes into consideration the communication and computation limitations of sensor networks. While there is always a trade off between security and performance, experimental results prove that the proposed framework can achieve high degree of security with negligible overheads.
77

A Security Framework for Wireless Sensor Networks

Zia, Tanveer January 2008 (has links)
Doctor of Philosophy (PhD) / Sensor networks have great potential to be employed in mission critical situations like battlefields but also in more everyday security and commercial applications such as building and traffic surveillance, habitat monitoring and smart homes etc. However, wireless sensor networks pose unique security challenges. While the deployment of sensor nodes in an unattended environment makes the networks vulnerable to a variety of potential attacks, the inherent power and memory limitations of sensor nodes makes conventional security solutions unfeasible. Though there has been some development in the field of sensor network security, the solutions presented thus far address only some of security problems faced. This research presents a security framework WSNSF (Wireless Sensor Networks Security Framework) to provide a comprehensive security solution against the known attacks in sensor networks. The proposed framework consists of four interacting components: a secure triple-key (STKS) scheme, secure routing algorithms (SRAs), a secure localization technique (SLT) and a malicious node detection mechanism. Singly, each of these components can achieve certain level of security. However, when deployed as a framework, a high degree of security is achievable. WSNSF takes into consideration the communication and computation limitations of sensor networks. While there is always a trade off between security and performance, experimental results prove that the proposed framework can achieve high degree of security with negligible overheads.
78

Three-tier wireless sensor network infrastructure for environmental monitoring

Han, Wei January 1900 (has links)
Doctor of Philosophy / Department of Biological & Agricultural Engineering / Naiqian Zhang / A two-tier wireless data communication system was developed to remotely monitor sediment concentration in streams in real time. The system used wireless motes and other devices to form a wireless sensor network to acquire data from multiple sensors. The system also used a Stargate, a single-board computer, as a gateway to manage and control data flow and wireless data transfer. The sensor signals were transmitted from an AirCard on the Stargate to an Internet server through the General Packet Radio Service (GPRS) provided by a commercial GSM cellular carrier. Various types of antennas were used to boost the signal level in a radio-hostile environment. Both short- and long-distance wireless data communications were achieved. Power supplies for the motes, Stargate, and AirCard were improved for reliable and robust field applications. The application software was developed using Java, C, nesC, LabView, and SQL to ensure seamless data transfer and enable both on-site and remote monitoring. Remote field tests were carried out at different locations with different GPRS signal strengths and a variety of landscapes. A three-tier wireless sensor network was then developed and deployed at three military installations around the country – Fort Riley in Kansas, Fort Benning in Georgia, and Aberdeen Proving Ground in Maryland - to remotely monitor sediment concentration and movement in real time. Sensor nodes, gateway stations, repeater stations, and central stations were strategically deployed to insure reliable signal transmissions. Radio signal strength was tested to analyze effects of distance, vegetation, and topographical barriers. Omni- and Yagi-directional antennas with different gains were tested to achieve robust, long-range communication in a wireless-hostile environment. Sampling times of sensor nodes within a local sensor network were synchronized at the gateway station. Error detection algorithms were developed to detect errors caused by interference and other impairments of the transmission path. GSM and CDMA cellular modems were used at different locations based on cellular coverage. Data were analyzed to verify the effectiveness and reliability of the three-tier WSN.
79

A game theoretic approach to improve energy efficiency of wireless sensor nodes / Willem Christoffel Petzer

Petzer, Willem Christoffel January 2015 (has links)
Wireless sensor networks (WSNs) are becoming increasingly pervasive in a number of applications. Due to the nature of WSNs, one of their biggest constraints is limited node energy. As WSNs grow in popularity, the prevalent issue remains to keep wireless sensor nodes alive for as long as possible, or risk disrupting the network. This dissertation develops a model based on the principles of game theory to improve the energy efficiency of wireless sensor nodes and increase the network lifetime by influencing the way routing takes place. The benefit of this model is a routing algorithm that is easily implementable and increases network lifetime by improving energy efficiency in the network. / MIng (Computer and Electronic Engineering), North-West University, Potchefstroom Campus, 2015
80

A game theoretic approach to improve energy efficiency of wireless sensor nodes / Willem Christoffel Petzer

Petzer, Willem Christoffel January 2015 (has links)
Wireless sensor networks (WSNs) are becoming increasingly pervasive in a number of applications. Due to the nature of WSNs, one of their biggest constraints is limited node energy. As WSNs grow in popularity, the prevalent issue remains to keep wireless sensor nodes alive for as long as possible, or risk disrupting the network. This dissertation develops a model based on the principles of game theory to improve the energy efficiency of wireless sensor nodes and increase the network lifetime by influencing the way routing takes place. The benefit of this model is a routing algorithm that is easily implementable and increases network lifetime by improving energy efficiency in the network. / MIng (Computer and Electronic Engineering), North-West University, Potchefstroom Campus, 2015

Page generated in 0.0477 seconds