Spelling suggestions: "subject:"wishart matrix"" "subject:"hishart matrix""
1 |
Contributions to High–Dimensional Analysis under Kolmogorov ConditionPielaszkiewicz, Jolanta Maria January 2015 (has links)
This thesis is about high–dimensional problems considered under the so{called Kolmogorov condition. Hence, we consider research questions related to random matrices with p rows (corresponding to the parameters) and n columns (corresponding to the sample size), where p > n, assuming that the ratio <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Csmall%5Cfrac%7Bp%7D%7Bn%7D" /> converges when the number of parameters and the sample size increase. We focus on the eigenvalue distribution of the considered matrices, since it is a well–known information–carrying object. The spectral distribution with compact support is fully characterized by its moments, i.e., by the normalized expectation of the trace of powers of the matrices. Moreover, such an expectation can be seen as a free moment in the non–commutative space of random matrices of size p x p equipped with the functional <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Csmall%20%5Cfrac%7B1%7D%7Bp%7DE%5BTr%5C%7B%5Ccdot%5C%7D%5D" />. Here, the connections with free probability theory arise. In the relation to that eld we investigate the closed form of the asymptotic spectral distribution for the sum of the quadratic forms. Moreover, we put a free cumulant–moment relation formula that is based on the summation over partitions of the number. This formula is an alternative to the free cumulant{moment relation given through non{crossing partitions ofthe set. Furthermore, we investigate the normalized <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Csmall%20E%5B%5Cprod_%7Bi=1%7D%5Ek%20Tr%5C%7BW%5E%7Bm_i%7D%5C%7D%5D" /> and derive, using the dierentiation with respect to some symmetric matrix, a recursive formula for that expectation. That allows us to re–establish moments of the Marcenko–Pastur distribution, and hence the recursive relation for the Catalan numbers. In this thesis we also prove that the <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Csmall%20%5Cprod_%7Bi=1%7D%5Ek%20Tr%5C%7BW%5E%7Bm_i%7D%5C%7D" />, where <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Csmall%20W%5Csim%5Cmathcal%7BW%7D_p(I_p,n)" />, is a consistent estimator of the <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Csmall%20E%5B%5Cprod_%7Bi=1%7D%5Ek%20Tr%5C%7BW%5E%7Bm_i%7D%5C%7D%5D" />. We consider <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Csmall%20Y_t=%5Csqrt%7Bnp%7D%5Cbig(%5Cfrac%7B1%7D%7Bp%7DTr%5Cbig%5C%7B%5Cbig(%5Cfrac%7B1%7D%7Bn%7DW%5Cbig)%5Et%5Cbig%5C%7D-m%5E%7B(t)%7D_1%20(n,p)%5Cbig)," />, where <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Csmall%20m%5E%7B(t)%7D_1%20(n,p)=E%5Cbig%5B%5Cfrac%7B1%7D%7Bp%7DTr%5Cbig%5C%7B%5Cbig(%5Cfrac%7B1%7D%7Bn%7DW%5Cbig)%5Et%5Cbig%5C%7D%5Cbig%5D" />, which is proven to be normally distributed. Moreover, we propose, based on these random variables, a test for the identity of the covariance matrix using a goodness{of{t approach. The test performs very well regarding the power of the test compared to some presented alternatives for both the high–dimensional data (p > n) and the multivariate data (p ≤ n).
|
2 |
Contributions to High–Dimensional Analysis under Kolmogorov ConditionPielaszkiewicz, Jolanta Maria January 2015 (has links)
This thesis is about high–dimensional problems considered under the so{called Kolmogorov condition. Hence, we consider research questions related to random matrices with p rows (corresponding to the parameters) and n columns (corresponding to the sample size), where p > n, assuming that the ratio <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Csmall%5Cfrac%7Bp%7D%7Bn%7D" /> converges when the number of parameters and the sample size increase. We focus on the eigenvalue distribution of the considered matrices, since it is a well–known information–carrying object. The spectral distribution with compact support is fully characterized by its moments, i.e., by the normalized expectation of the trace of powers of the matrices. Moreover, such an expectation can be seen as a free moment in the non–commutative space of random matrices of size p x p equipped with the functional <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Csmall%20%5Cfrac%7B1%7D%7Bp%7DE%5BTr%5C%7B%5Ccdot%5C%7D%5D" />. Here, the connections with free probability theory arise. In the relation to that eld we investigate the closed form of the asymptotic spectral distribution for the sum of the quadratic forms. Moreover, we put a free cumulant–moment relation formula that is based on the summation over partitions of the number. This formula is an alternative to the free cumulant{moment relation given through non{crossing partitions ofthe set. Furthermore, we investigate the normalized <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Csmall%20E%5B%5Cprod_%7Bi=1%7D%5Ek%20Tr%5C%7BW%5E%7Bm_i%7D%5C%7D%5D" /> and derive, using the dierentiation with respect to some symmetric matrix, a recursive formula for that expectation. That allows us to re–establish moments of the Marcenko–Pastur distribution, and hence the recursive relation for the Catalan numbers. In this thesis we also prove that the <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Csmall%20%5Cprod_%7Bi=1%7D%5Ek%20Tr%5C%7BW%5E%7Bm_i%7D%5C%7D" />, where <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Csmall%20W%5Csim%5Cmathcal%7BW%7D_p(I_p,n)" />, is a consistent estimator of the <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Csmall%20E%5B%5Cprod_%7Bi=1%7D%5Ek%20Tr%5C%7BW%5E%7Bm_i%7D%5C%7D%5D" />. We consider <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Csmall%20Y_t=%5Csqrt%7Bnp%7D%5Cbig(%5Cfrac%7B1%7D%7Bp%7DTr%5Cbig%5C%7B%5Cbig(%5Cfrac%7B1%7D%7Bn%7DW%5Cbig)%5Et%5Cbig%5C%7D-m%5E%7B(t)%7D_1%20(n,p)%5Cbig)," />, where <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Csmall%20m%5E%7B(t)%7D_1%20(n,p)=E%5Cbig%5B%5Cfrac%7B1%7D%7Bp%7DTr%5Cbig%5C%7B%5Cbig(%5Cfrac%7B1%7D%7Bn%7DW%5Cbig)%5Et%5Cbig%5C%7D%5Cbig%5D" />, which is proven to be normally distributed. Moreover, we propose, based on these random variables, a test for the identity of the covariance matrix using a goodness{of{t approach. The test performs very well regarding the power of the test compared to some presented alternatives for both the high–dimensional data (p > n) and the multivariate data (p ≤ n).
|
3 |
Unitary Integrations for Unified MIMO Capacity and Performance AnalysisGhaderipoor, Alireza Unknown Date
No description available.
|
4 |
Unitary Integrations for Unified MIMO Capacity and Performance AnalysisGhaderipoor, Alireza 11 1900 (has links)
Integrations over the unitary group are required in many applications including the joint eigenvalue distributions of the Wishart matrices. In this thesis, a universal integration framework is proposed to use the character expansions for any unitary integral with general rectangular complex matrices in the integrand. The proposed method is applied to solve some of the well--known but not solved in general form unitary integrals in their general forms, such as the generalized Harish--Chandra--Itzykson--Zuber integral. These integrals have applications in quantum chromodynamics and color--flavor transformations in physics. The unitary integral results are used to obtain new expressions for the joint eigenvalue distributions of the semi--correlated and full--correlated central Wishart matrices, as well as the i.i.d. and uncorrelated noncentral Wishart matrices, in a unified approach. Compared to the previous expressions in the literature, these new expressions are much easier to compute and also to apply for further analysis. In addition, the joint eigenvalue distribution of the full--correlated case is a new result in random matrix theory. The new distribution results are employed to obtain the individual eigenvalue densities of Wishart matrices, as well as the capacity of multiple--input multiple--output (MIMO) wireless channels. The joint eigenvalue distribution of the i.i.d. case is used to obtain the largest eigenvalue density and the bit error rate (BER) of the optimal beamforming in finite--series expressions. When complete channel state information is not available at the transmitter, a codebook of beamformers is used by the transmitter and the receiver. In this thesis, a codebook design method using the genetic algorithm is proposed, which reduces the design complexity and achieves large minimum--distance codebooks. Exploiting the specific structure of these beamformers, an order and bound algorithm is proposed to reduce the beamformer selection complexity at the receiver side. By employing a geometrical approach, an approximate BER for limited feedback beamforming is derived in finite--series expressions.
|
5 |
Antieigenvalues of Wishart MatricesCalderon, Simon January 2020 (has links)
In this thesis we derive the distribution for the first antieigenvalue for a random matrix with distribution W ∼ Wp(n, Ip) for p = 2 and p = 3. For p = 2 we present a proof that the first antieigenvalue has distribution β((n−1)/2, 1). For p = 3 we prove that the probability density function can be expressed using a sum of hypergeometric functions. Besides the main objective, the thesis seeks to introduce the theory of multivariate statistics and antieigenvalues.
|
Page generated in 0.0379 seconds