• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Novel Function of DEAD Box p68 RNA Helicase In Tumor Cell Proliferation And Epithelial-Mesenchymal Transition

Yang, Liuqing 31 July 2006 (has links)
Activities of the DEAD box (Asp-Glu-Ala-Asp) family of proteins- including RNA-dependent ATPase and RNA helicase- function in all organisms to sculpt RNA-RNA duplex and RNA-protein complexes, ensuring that necessary rearrangements are rapidly and properly resolved during genetic information processing. Identified as a prototypic member of the DEAD box family and documented as an ATPase and RNA helicase, p68 plays essential and diverse functions in the control of gene expression ranging from pre-mRNA/rRNA processing and mRNA decay/stability to transcriptional activation and initiation. Despite the early implied roles in organ maturation and tumor progression, the functional contributions of p68 to growth/differentiation regulation and cancer development remain undefined. Here, we show c-Abl-dependent phosphorylation of p68 markedly associates with abnormal cell growth and cancer development. Importantly, we characterize an unanticipated signaling module through which p68 functionally contributes to Epithelial-Mesenchymal Transition (EMT) and cell proliferation. p68, which appears to be phosphorylated by c-Abl at tyrosine 593, consequently promotes an EMT through its ability to recruit â-catenin into cell nucleus via a canonic Wnt/â-catenin axis independent way; accordingly, phosphor-p68 (phosphorylated at tyrosine 593 residue) also stimulates tumor cell growth, which requires the ATPase activity of the protein. These findings define a potential mechanism whereby phosphor-p68 recruits â-catenin into cell nucleus in ATP hydrolysis driven fashion and cooperatively regulates transcriptional programs that control an EMT. The dissertation thus demonstrates a tight coordination between DEAD box RNA helicase and cancer development.

Page generated in 0.3426 seconds