• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 1
  • 1
  • 1
  • Tagged with
  • 18
  • 18
  • 12
  • 6
  • 6
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Zebrafish hdac1 reciprocally regulates the canonical and non-canonical Wnt pathways

Nambiar, Roopa. January 2006 (has links)
Thesis (Ph. D.)--Ohio State University, 2006. / Available online via OhioLINK's ETD Center; full text release delayed at author's request until 2007 Jun 15
2

Hormonal, chemical, and transcriptional regulations of Wnt/{221}-catenin signaling in mammary carcinogensis

Chow, Hei-man., 周熙文. January 2010 (has links)
published_or_final_version / Pharmacology and Pharmacy / Doctoral / Doctor of Philosophy
3

Study of the roles of dishevelled-3 in stemness and cell migration in hepatocellular carcinoma

Tsui, Yu-man, 徐宇文 January 2013 (has links)
Hepatocellular carcinoma (HCC) is a common malignancy worldwide and particularly common in China and Southeast Asia. It ranks the 2nd and 4th most common fatal cancer in males and females, respectively, in Hong Kong. Current treatments are not always effective, as recurrence and metastasis in HCC are difficult to tackle and the underlying mechanisms not fully understood. Aberration of Wnt signaling has been implicated in HCC; in this study, we investigated the underlying mechanisms of how aberrant Wnt signaling promoted HCC development. With Taqman Low Density Array (LDA) analysis on 38 pairs of HCC and the corresponding non-tumorous livers for 59 Wnt signaling related-genes, we found significant overexpression of the Wnt signaling intermediate, Dishevelled (Dvl)-3, in HCC (p = 0.014). This observation in LDA was confirmed in 36 additional HCC cases. Among a total of 74 cases studied, 28.38% showed more than 3-fold overexpression in the tumors as compared with the corresponding non-tumorous livers. Dvl3 overexpression positively correlated with the presence of venous invasion. We also observed significant correlation of Dvl3 expression with accumulation of β-catenin, a downstream effecter of Wnt/β-catenin signaling (p=0.028). We further characterized the functional roles of Dvl3 in contributing to the stem cell-like and metastatic properties of HCC. We found that Dvl3 knockdown in HCC cells suppressed cell proliferation, sphere formation, tumorigenicity in immunodeficient mice, chemo-resistance, and expression of stemness genes. We then examined whether Wnt/β-catenin was effectively modulated by Dvl3 and found that Dvl3 overexpression and knockdown, respectively, promoted and reduced the TOP/FOP luciferase reporter activity in HCC cells. This was accompanied by the expression of β-catenin target genes, EpCAM and LGR5, both of which are associated with HCC stemness. Furthermore, rescue with wild-type or constitutively active β-catenin partially restored the in vivo tumorigenicity suppressed by Dvl3 knockdown, indicating a partial role of β-catenin in mediating the effects of Dvl3 on HCC stemness. In addition, since cell migration is a critical determinant in metastasis, we assessed the HCC cell migratory ability in vitro using transwell migration assays and observed suppression of the cell migration ability upon Dvl3 knockdown. Also, the in vivo orthotopic model confirmed a role of Dvl3 in promoting metastasis, as stable Dvl3 knockdown in HCC cells resulted in a reduction in lung metastasis. Interestingly, the effect of Dvl3 on cell migration was independent of β-catenin, as knockdown of β-catenin had no effect on HCC cell migration in vitro. It was also not related to the phosphorylation of MYPT in Rho-ROCK signaling, which itself was previously implicated in HCC cells metastasis and reported as a downstream signaling of Dvl in development. In summary, our study has identified roles of Dvl3 in HCC stemness properties and cell migration and this may provide functional implication of Dvl3 overexpression, which significantly correlated with venous invasion in human HCCs. Also, β-catenin is partly responsible for the role of Dvl3 in HCC stemness but independent of that in cell migration. Functional characterization of Dvl3 in HCC may help future development of therapy targeting Dvl3 of Wnt signaling pathways. / published_or_final_version / Pathology / Doctoral / Doctor of Philosophy
4

Wnt5a signaling independently of the planar cell polarity pathway resulting in convergent extension and neural tube closure during vertebrate development /

Barrott, Jared James, January 2008 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept. of Physiology and Developmental Biology, 2008. / Includes bibliographical references (p. 38-40).
5

POP-1/CETCF-1 has multiple functions in P ectoblast development

Deshpande, Rashmi Jayant. January 2005 (has links)
Thesis (Ph. D.)--Ohio State University, 2005. / Title from first page of PDF file. Includes bibliographical references (p. 204-216).
6

Wnt inhibitory factor 1 (Wif-1) coordinates Shh and Wnt signaling activities in urorectal development

Ng, Chun-laam., 吳圳嵐. January 2012 (has links)
In vertebrates, the urogenital sinus and the hindgut are connected at a hollow region called cloaca. A midline mesenchymal structure known as urorectal septum (urs) descends from the ventral body wall to separate the urogenital sinus from the hindgut before the formation of an anal opening. Subsequent cloaca membrane regression at the ventral midline of the genital tubercle (GT) is crucial for the formation of an anal opening. These two events are important during cloaca septation in urorectal development. Mice with defective Shh or Wnt signaling displayed similar urorectal defects such as GT agenesis, un-partitioned cloaca (persistent cloaca) and proximal urethral opening that are attributable to increased cell apoptosis. Furthermore, Shh and Wnt signal transduction coordinate with each other and regulate cell survival of the developing urorectum. However, the molecular mechanisms by which these two signaling pathways coordinate in urorectal development remain unclear. We previously identified Wnt inhibitory factor1 (Wif1) from Affymetrix array analysis for genes/pathways that is implicated in urorectal development. Wif1 is a secreted protein that binds directly to Wnt ligands preventing Wnts from binding to receptors. This leads to -catenin degradation and thereby inhibits their activities. It is known that Wif1 binds to Wnt3a and Wnt5a with high affinity and deletion of Wnt3a, Wnt5a and -catenin in mice caused GT agenesis, persistent cloaca and proximal hypospadias. Using ETU-induced anorectal malformations model, I found out that Wif1 is ectopically expressed in the un-tubularized and un-septated urorectum. Wif1 is mainly expressed at the fusing endoderm that associates with programmed cell death during cloaca septation. Exogenous addition of Wif1 protein in urorectum culture also caused cloaca membrane disintegration, and proximal urethral opening that may be due to aberrant apoptosis. Shh and Wif1 are differentially expressed at the cloaca endoderm. In normal mice, Shh is highly expressed at the cloaca endoderm except those Wif1-expressing endodermal cells. Blockage of Shh pathway by cyclopamine in urorectum culture induced ectopic expression of Wif1, concomitant with genital tubercle hypoplasia and un-septated cloaca. More importantly, deletion of Shh in mice hastened Wif1 expression at the cloaca membrane endoderm and elicited increased cell death in the Wif1 expressing endoderm. Wif1-/- embryos display urorectal defects including delayed genital outgrowth and proximal hypospadias. Therefore, disruption of spatiotemporal expression of Wif1 could lead to defective Wnt signaling and contributes to abnormal urorectal development in Shh-/- mutant. Current study revealed that Wif1 is involved in urorectal development and is implicated in urorectal defects. It may function as a pro-apoptotic factor to regulate endodermal cell death which is essential for the septation process. Its specific expression is restricted at the midline cloaca endoderm by Shh signaling to inhibit local Wnt--catenin activities during cloaca septation. I proposed novel hypothetical models to explain (1) the significance of the tempo-spatial expression of Wif1; (2) the significance of cell death; and (3) the molecular mechanism that Shh signaling regulates Wnt signaling activities through Wif1 in urorectal development. / published_or_final_version / Surgery / Doctoral / Doctor of Philosophy
7

Differential expression of Wnt inhibitors Dickkopf-1 (Dkk-1) and Wnt inhibitory factor-1 (Wif1) in the regulation of urorectal development

Ho, Sze-hang, 何思恆 January 2014 (has links)
In mammals, the external genitalia, urinary tract and anorectal tract are developed from a common embryonic primordium, the urorectum. Cloaca is the hollow space inside the urorectum that connects the hindgut and the urogenital sinus. During the urorectal development, the external genitalia is formed from the outgrowth of genital tubercle (GT) protruding from the urorectum, while the future urinary tract and anorectal tract are formed by the partition of cloaca during cloacal septation. GT outgrowth and cloacal septation are important developmental events for the formation of genitourinary and anorectal system. In human, dysregulation of these developmental events results in congenital anorectal malformations (ARM). Wnt signaling is one of the key signaling pathways that regulates urorectal development. The activity of Wnt signaling is initiated by the binding of Wnt ligands to cell surface receptors, which can be antagonized by secretory Wnt inhibitors. Dickkopf1 (Dkk1) and Wnt inhibitory factor 1 (Wif1) are secretory Wnt inhibitors implicated in urorectal development. However, the functions of other secretory Wnt inhibitors during urorectal developments remain to be elucidated. In this study, expression analyses showed that Dkk1, Dickkopf2 (Dkk2), Dickkopf4 (Dkk4), Secreted Frizzled-related Protein 1 (Sfrp1) and Wif1 were expressed in the developing urorectum. The dynamic, overlapping and restricted expression patterns of these Wnt inhibitors were closely associated with the GT outgrowth and the cloacal septation events, implying that these Wnt inhibitors functioned in a coordinated manner in defining the field of Wnt signaling activities in the developing urorectum. Wif1 knockout mice (〖Wif1〗^(-/-)) was used as the model to investigate the functions of and the interplay between secretory Wnt inhibitors in urorectal development. GT outgrowth and cloacal septation defects were observed in 〖Wif1〗^(-/-) embryos. Most of the 〖Wif1〗^(-/-) embryos displayed varying degrees of GT outgrowth defects, while septation defects were only occasionally observed. This suggested that GT outgrowth and cloacal septation were regulated by Wif1 via different regulatory mechanisms. In the urorectum of 〖Wif1〗^(-/-) embryos, Dkk1 was significantly upregulated in the peri-cloacal mesenchyme. Further expression analysis suggested that Dkk1 was sufficient to rescue cloacal septation defects but not GT outgrowth defects in 〖Wif1〗^(-/-)embryos. In the 〖Wif1〗^(-/-) embryos with severe GT outgrowth defects, the Fgf8-expressing distal urethral epithelium, the signaling center in the urorectum, was absent, suggesting that the GT outgrowth defects could be contributed by the loss of dUE-expressing signals such as Fgf8. This study demonstrated the importance of secretory Wnt inhibitors in the GT outgrowth and cloacal septation and suggested that secretory Wnt inhibitors played partially overlapping roles in urorectal development. A rescue mechanism for cloacal septation performed by Dkk1 upon Wif1 deletion was proposed. Such auto-regulatory mechanism within the Wnt signaling pathway indicated that Wnt inhibitors play essential regulatory roles in the urorectal development and a balanced Wnt signaling activity modulated by Wnt inhibitors is crucial to the development of urorectum. / published_or_final_version / Surgery / Master / Master of Philosophy
8

Identification of epigenetic biomarkers for diagnosis of nasopharyngeal carcinoma and determination of WIF1 functional relevance

Yang, Xuesong, 楊雪松 January 2014 (has links)
Nasopharyngeal carcinoma (NPC) is closely associated with Epstein-Barr Virus (EBV).Early diagnosis of NPC will improve the overall survival. However, traditional EBV markers do not perform well in high-risk individuals or for early detection of NPC. Aberrant promoter hypermethylation of tumor suppressor genes (TSGs) is an important epigenetic change in early tumorigenesis. This study identified a promising panel of methylation markers for early detection of NPC and assessed the clinical usefulness of these markers using nasopharyngeal (NP) brushing and blood specimens. Methylation-sensitive high resolution melting (MS-HRM) assays were carried out to assess the methylation status of a selected panel of four TSGs (RASSF1A, WIF1, DAPK1, RAR2)in biopsies, NP brushings and cell-free plasma from NPC patients. NP brushing and blood samples from high-risk and cancer-free groups were used as controls. The DNA methylation panel showed higher sensitivity and specificity than the EBV DNA markerincell-free plasma for early stage (Iand II) NPC (sensitivity: 64.6% vs. 51.2% and specificity: 96.0% vs. 88.0%, respectively). In combination with plasma EBV DNA, testing for DNA methylation in plasma and NP brushings using the four-gene MS-HRM test significantly increased the detection rate for all stages of NPC(94.1% for stages I-II, 98.4% for stages III-IV) as well as recurrence(93.5%). Aberrant activation of the Wnt signaling pathway is a common mechanism for cell transformation and tumor development in a variety of human cancers. A high frequency of promoter hypermethylation of WIF1was observed in NPC cell lines (100%), primary tumor biopsies(89.7%), NP brushings (80.2%), and cell-free plasma (51.8%),with no significant correlation with NPC stage. Simultaneously, expression of WIF1 was completely silenced in NPC cell lines (HONE1, HK1, HNE1, SUNE1, CNE1, CNE2, and C666),but not in immortalized NP epithelial cells (NP460 and NP69). These together suggested an important role of WIF1 in NPC development. In vitro and in vivo functional assays revealed a tumor suppressive role of WIF1in NPC. Restoration of WIF1expression in NPC cells significantly suppressed anchorage-independent growth, in vivo tumorigenicity, invasion, migration, and angiogenesis of NPC cells. A number of important angiogenesis-related genes were down-regulated by WIF1expression, including IL6,IL8,VEGF165,VEGFA, PDGFB, and MCP1. There is inhibition of the Wnt/β-catenin signaling pathway, manifested as decreased β-catenin expression and TCF/LEF Wnt promoter activity. These data indicated the important regulatory role of Wnt signaling pathway in NPC tumorigenicity, invasion, migration, and angiogenesis, by interacting with the complex signaling network in NPC cells. To conclude, the MS-HRM assay on the selected gene panel in combination with the EBV DNA test, increases the sensitivity for NPC detection at an early stage and detection of recurrence and has great potential to become a non-invasive test for early diagnosis and disease monitoring after treatment. Collectively, results from this study reveal that WIF1is not only a sensitive biomarker, but also a tumor suppressor gene in NPC. Understanding the molecular regulatory role ofWIF1in NPC will facilitate the diagnosis of NPC, and development of novel NPC therapeutic strategy. / published_or_final_version / Clinical Oncology / Doctoral / Doctor of Philosophy
9

Analysis of Wnt ligands and Fz receptors in Ecdysozoa : Investigating the evolution of segmentation

Hogvall, Mattias January 2015 (has links)
No description available.
10

FGF4 and Wnt5a/PCP signaling promote limb outgrowth by polarizing limb mesenchyme /

Low, Keri Lynn, January 2006 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept. of Physiology and Developmental Biology, 2006. / Includes bibliographical references (p. 34-36).

Page generated in 0.0775 seconds