Spelling suggestions: "subject:"wolfrayet tar"" "subject:"wolfrayet star""
1 |
Discovery of X-ray Emission from the Wolf-Rayet Star WR 142 of Oxygen Subtype.Oskinova, L., Hamann, W.-R., Feldmeier, A., Ignace, Richard, Chu, Y.-H. 01 March 2009 (has links) (PDF)
We report the discovery of weak yet hard X-ray emission from the Wolf-Rayet (WR) star WR 142 with the XMM-Newton X-ray telescope. Being of spectral subtype WO2, WR 142 is a massive star in a very advanced evolutionary stage shortly before its explosion as a supernova or gamma-ray burst. This is the first detection of X-ray emission from a WO-type star. We rule out any serendipitous X-ray sources within approximate to 1 '' of WR 142. WR 142 has an X-ray luminosity of L(X) approximate to 7 x 10(30) erg s(-1), which constitutes only less than or similar to 10(-8) of its bolometric luminosity. The hard X-ray spectrum suggests a plasma temperature of about 100 MK. Commonly, X-ray emission from stellar winds is attributed to embedded shocks due to the intrinsic instability of the radiation driving. From qualitative considerations we conclude that this mechanism cannot account for the hardness of the observed radiation. There are no hints for a binary companion. Therefore the only remaining, albeit speculative explanation must refer to magnetic activity. Possibly related, WR 142 seems to rotate extremely fast, as indicated by the unusually round profiles of its optical emission lines. Our detection implies that the wind of WR 142 must be relatively transparent to X-rays, which can be due to strong wind ionization, wind clumping, or nonspherical geometry from rapid rotation.
|
2 |
High-Resolution X-ray Spectroscopy reveals the Special Nature of the Wolf-Rayet Star Winds.Oskinova, L., Gayley, K., Hamann, W.-R., Huenemoerder, D., Ignace, Richard, Pollock, A. 10 March 2012 (has links) (PDF)
We present the first high-resolution X-ray spectrum of a putatively single Wolf–Rayet (WR) star. 400 ks observations of WR 6 by the XMM-Newton telescope resulted in a superb quality high-resolution X-ray spectrum. Spectral analysis reveals that the X-rays originate far out in the stellar wind, more than 30 stellar radii from the photosphere, and thus outside the wind acceleration zone where the line-driving instability (LDI) could create shocks. The X-ray emitting plasma reaches temperatures up to 50 MK and is embedded within the unshocked, “cool” stellar wind as revealed by characteristic spectral signatures. We detect a fluorescent Fe line at ≈6.4 keV. The presence of fluorescence is consistent with a two-component medium, where the cool wind is permeated with the hot X-ray emitting plasma. The wind must have a very porous structure to allow the observed amount of X-rays to escape. We find that neither the LDI nor any alternative binary scenario can explain the data. We suggest a scenario where X-rays are produced when the fast wind rams into slow “sticky clumps” that resist acceleration. Our new data show that the X-rays in single WR star are generated by some special mechanism different from the one operating in the O-star winds.
|
3 |
Time Series Photometry of the Symbiotic Star V1835 Aql and New Variable Stars in AquilaCaddy, Robert V. 24 July 2018 (has links)
No description available.
|
Page generated in 0.0932 seconds