• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 20
  • 20
  • 20
  • 20
  • 20
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The study of plant cell walls deconstruction using electron beams irradiation

Kittisenee, Jetana 01 March 2010 (has links)
Plant cell walls compose the largest source of sugars on earth and are a potential source after conversion for liquid transportation fuels. However, the crystalline region of cellulose and the lignin that incases it present significant obstacles for enzymes to digest. This lowers the sugar yield, which ultimately decreases the production efficiency of bioethanol. A pretreatment that could help lowering the amount of crystallinity; meanwhile, breakdown the matrix of lignin and polysaccharides that cover cellulose fibers would be ideal. Here we propose a physical pretreatment strategy of electron beam irradiation that could potentially decrease cellulose crystallinity as well as unzip the lignin structure. Four types of biomass: cellulose, yellow pine, yellow poplar, and switchgrass were irradiated with a 12 MeV electron beam (Sterigenics, Inc.) at dosages of 0, 54, 80, 148 and 403 kGy. By combining the result from the wet chemical analysis of percent weight glucose/ cellulose from the HPLC, percent crystallinity from the Wide Angle X-Ray Diffraction (WAX) and the change of chemical functionality from Fourier Transform Infrared Spectrometer (FTIR), a promising effect is obtained in pine and yellow poplar but not in cellulose and switchgrass. A significant increase in percent glucose is observed for pine at higher doses as shown by (r = 0.97, P< 0.0076) which are 9.4 and 27% at 0 and 403 kGy. The amount of glucose considerably changes from all different types of biomass over time (P< 0.0001). A strong correlation of decreasing in percent crystallinity was found in poplar (r = -0.89, P< 0.05) from 32.4% to 17.4% and related to an average increase in percent glucose produced from 30 to 55% comparing between 0 and 403 kGy.
2

Effects of Hydrologic Gradients on Woody Debris Breakdown and Macroinvertebrate Colonization in a Cumberland Plateau Watershed, Eastern Kentucky, U.S.A.

Bernal, Robin Rae 01 May 2010 (has links)
This research assessed the influence of hydrologic gradients on woody debris dynamics in a Cumberland Plateau watershed, eastern Kentucky, U.S.A. Although the breakdown of wood can be attributed to several different processes, including leaching, biological decay, fragmentation, and transport, the influence of differing flow regimes has been unstudied. The objectives of this study were to examine how stream channel type (temporary vs. perennial) affected wood processing dynamics (i.e., mass loss and macroinvertebrate colonization and standing stock patterns). Two questions were addressed: (1) do mass loss rates of wood differ across hydrological gradients in stream channels?, and (2) do macroinvertebrate colonization and standing stock patterns vary in relation to hydrologic gradients? Although within each channel type both dry mass and ash free dry mass loss followed a negative exponential model (p < 0.05), there wasn’t a significant between-channel difference in mass loss rates (p > 0.05). Breakdown rates (-k) ranged from 0.133 – 0.194year-1 for perennial streams compared to 0.103 – 0.170year-1 in the temporary streams. Collector-gathers comprised the greatest proportion of macroinvertebrates, accounting for 65.5% (temporary) and 59.3% (perennial) of all taxa colonizing wood bundles, followed by shredders (16.1%, 16.8%), predators (16.8%, 20.1%), (scrapers < 0.1% in both reaches) and filtering collectors (1.2%, 3.7%). Overall, there were no significant between-channel differences for total macroinvertebrate abundance, total macroinvertebrate biomass, and similarly for abundance and biomass of all functional groups. There was a trend, however, of decreasing density and biomass over time of collector-gathers and shredders on wood. Overall, hydrological gradients had no effects on short-term breakdown rates of woody debris or macroinvertebrate colonization patterns. Studies of wood breakdown have been shown to require long study periods (≥ 5 years), therefore, future studies of hydrological gradient may show differing results for woody debris breakdown.
3

The study of plant cell walls deconstruction using electron beams irradiation

Kittisenee, Jetana 01 March 2010 (has links)
Plant cell walls compose the largest source of sugars on earth and are a potential source after conversion for liquid transportation fuels. However, the crystalline region of cellulose and the lignin that incases it present significant obstacles for enzymes to digest. This lowers the sugar yield, which ultimately decreases the production efficiency of bioethanol. A pretreatment that could help lowering the amount of crystallinity; meanwhile, breakdown the matrix of lignin and polysaccharides that cover cellulose fibers would be ideal. Here we propose a physical pretreatment strategy of electron beam irradiation that could potentially decrease cellulose crystallinity as well as unzip the lignin structure. Four types of biomass: cellulose, yellow pine, yellow poplar, and switchgrass were irradiated with a 12 MeV electron beam (Sterigenics, Inc.) at dosages of 0, 54, 80, 148 and 403 kGy. By combining the result from the wet chemical analysis of percent weight glucose/ cellulose from the HPLC, percent crystallinity from the Wide Angle X-Ray Diffraction (WAX) and the change of chemical functionality from Fourier Transform Infrared Spectrometer (FTIR), a promising effect is obtained in pine and yellow poplar but not in cellulose and switchgrass. A significant increase in percent glucose is observed for pine at higher doses as shown by (r = 0.97, P< 0.0076) which are 9.4 and 27% at 0 and 403 kGy. The amount of glucose considerably changes from all different types of biomass over time (P< 0.0001). A strong correlation of decreasing in percent crystallinity was found in poplar (r = -0.89, P< 0.05) from 32.4% to 17.4% and related to an average increase in percent glucose produced from 30 to 55% comparing between 0 and 403 kGy.
4

Consumer attitudes and perceptions towards the use of reclaimed wood

Craig, Mia 13 May 2022 (has links) (PDF)
Reclaimed wood is material salvaged from old, abandoned buildings that offers sustainable living to communities. There have been previous studies on reclaimed wood, but a limited amount linking reclaimed wood to consumerism. In August 2021, an online survey was conducted to gauge consumers’ knowledge of the industry and attitudes on reclaimed wood practices. Consumers are U.S. citizens 18 years of age or older. Study results indicate that respondents have little knowledge regarding reclaimed wood. Of the 1,516 respondents, 44% seem knowledgeable of reclaimed wood. Most respondents are not aware that reclaimed wood is a separate industry. Respondents believe there should be better marketing practices. Respondents also believe reclaimed wood to be environmentally friendly, durable, and aesthetically pleasing. The reasons respondents would purchase reclaimed wood are sustainability, aesthetics, and to exercise a need. Respondents acknowledge the importance of the origin of wood products. Respondents also acknowledge the importance of the industry.
5

Cross-laminated timber (CLT) mechanical properties evaluation.

Spinelli Correa, Laurice Mara 13 May 2022 (has links) (PDF)
As the use of engineered wood products as such as cross-laminated timber (CLT) evolves in United States, it’s imperative to understand its behavior under different circumstances as well as to explore new possible streams for product’s application. In that matter, it was proposed that a research study would be developed to evaluate the performance of CLT panels focusing on strength and stiffness properties. To accomplish this goal, three main objectives were traced: 1) To complete preliminary test on traditional lumber in order to observe notched wood failure behavior focusing on strength, ductility, and failure mode; 2) To perform mechanical testing and non-destructive evaluation on 3-ply CLT control panels in order to compare design calculation methods and efficiency of NDE on CLT; and 3) To perform mechanical testing on notched 3-ply CLT samples to evaluate the influence of notches and stitching reinforcement on panels. Based on these objectives, this dissertation features five main sections: 1) General Introduction, 2) Technical note: Ductility and brittleness in small clear notched S-P-F beams, 3) Evaluation of the modulus of elasticity and modulus of rupture of cross-laminated timber with longitudinal vibration NDE techniques, 4) Case study of 3-ply commercial southern pine CLT mechanical properties and design values, and 5) Effect of notching on 3-ply southern pine cross-laminated timber panels stiffness and strength.
6

Enhancing the performance of dowel type fasteners and a case study of timber truss failure

Yeary, Lon A. 11 May 2022 (has links) (PDF)
This document will outline the findings of three separate and independent studies: Study 1: In or around 1972, an experimental building was constructed. One of the intents of the construction project was to demonstrate advancements in wood building construction design. It was value-engineered throughout. That is, its materials and systems were intended to function at or near design capacity. In 2019, part of the roof of the structure collapsed. This case study investigates two potential factors that led to the failure: stress concentration in excess of the 12 allowable stress for 2 × 4 web members and insufficient plywood sheathing to support live loads 13 caused by large rain events. Study 2: As a building material, cross laminated timber (CLT) has exponentially grown in popularity recently. Although performing superior to numerous other popular building materials, a consistent issue presented in wood construction is the effect of moisture on performance. This study looks to investigate the effect of moisture content on the performance of a 2-way dowel type fastener system loaded in shear perpendicular to the major strength axis. It was found that the peak load capacity of the specimens was not affected by the moisture content of the CLT. However, yield strength increased as the moisture content decreased. Lastly it was found that the failure mode changed from ductile to brittle as specimens became drier than 12% moisture content by mass. Study 3: Inherently, the weak point of any structure is the connection system. This phenomenon is particularly apparent in wooden structures as dowel type fasteners place tremendous amounts of stress perpendicular to the grain of the wood, as well as shear stress under the bolt. In hopes of mitigating this behavior, fiberglass reinforcement of these samples is examined to see if both failure mode as well as overall performance of these fasteners could be improved with reinforcement. It was found that fiberglass significantly reduced the standard deviation of failure strength of fasteners, significantly increased the overall strength of the fasteners, increased the efficiency of the fasteners, and finally increased the probability of bearing failure opposed to block shear failure.
7

Determination of flexural strength of structural red and white oak and hardwood composite lumber

Sherrington, Alan 13 May 2022 (has links) (PDF)
In this research, flexural properties of mill-run, in-grade white oak and red oak lumber from a single mill and commercially available laminated hardwood composite were evaluated. Structurally graded green (wet) freshly sawn red oak and white oak 5 by 10-cm (2 by 4-in.) nominal lumber as well as glue-laminated hardwood composite billets were tested in bending and their modulus of rupture (MOR) and modulus of elasticity (MOE) properties were developed. It is well documented that MOR and MOE are two major indicators to evaluate flexural strength of wood lumbers. From these data, summary statistics, design values, and mean separations were calculated and reported. Overall, the red and white oak lumber performed similarly to structural No. 2 grade material. The hardwood composite billets were highly uniform. Each of the three materials demonstrated a reasonably good relationship between MOE and MOR, thereby suggesting that MOE could be used as a selection criterion for strength in a commercial use situation.
8

Attitudes and perceptions of college students and recent college graduates towards forestry and wood products science fields

Peres Vieira Bedette, Amanda 13 May 2022 (has links)
Over the past few decades, university level US Forestry and Wood Science and Technology programs have faced declining enrollment. As a result, the seeming disinterest of younger generations has impacted employment in these sectors. In an attempt to bridge the communication gap among colleges/industries, this study was created to attract the interest and maintain the enthusiasm of new generations of professionals and currently enrolled college students in the United States. In September 2021, an online survey was created and distributed to over 1500 alumni and students and received 1,495 usable surveys. Analysis performed on the resultant data included descriptive statistics and chi-square calculations. Although the study results indicate that the current generation of students and professionals appear to have basic knowledge surrounding the forestry and wood products/science industries, they showed a lack of awareness of the available careers linked to the sector.
9

Wood properties and utilization of assorted hardwoods

Snow, Roger Dustin 11 May 2022 (has links)
This work is made up of three parts. Part one looks to establish design values for two types of three ply access mats from the U.S. South and Midwest. The mats were subject to 3 point bending tests to determine strength and stiffness values. Values for MOE (Modulus of Elasticity) and MOR (Modulus of Rupture) are reported by region and mat design. Part two tested five species groups of hardwoods for wear resistance and hardness. These species groups include white oak, red oak, ash, sweetgum and hickory. These tests for wear were performed on a Navy-Type Wear Tester according to ASTM D2394-17. Hardness specimens were tested with the Janka method according to ASTM D143-14. The third and final part looks at the impact of thermomechanical densification on rate of wear in five species groups of hardwood. The species groups were white oak, red oak, ash, sweetgum and hickory. Samples were pressed at 1000psi at temperature of 350 degrees Fahrenheit, in order to plasticize the wood and densify it at the same time. These samples were then tested on the Navy-Type Wear Tester to determine whether densification had an impact on wear resistance.
10

Expanding the market of biomaterials

Quin, Franklin, Jr. 12 May 2023 (has links) (PDF)
Biomaterials such as wood and bamboo are in high demand as a building material with the push for building with green technology. The wood product industry accounts for approximately 4% of the total U.S. manufacturing GDP (Gross Domestic Product), which is more than $100 billion. The industry supports over 752,000 full-time equivalent jobs, most of which are in rural areas where employment opportunities are limited. The estimated global market value of bamboo is estimated to be $60 billion annually. This research will explore the use of wood and bamboo in different end use products. The objectives of this research will 1) evaluate the behavior of two single bolt connections in the post-to-rail joint in a hardwood stairway system; 2) the potential of post-treating pre-fabricated cross-laminated timber (CLT) panels with two different copper based preservative treatments; and 3) estimated design values for a commercially sourced bolt laminated bamboo industrial mat. To accomplish these objectives, this dissertation is divided into five sections: 1) Introduction, 2) Structural performance of the post-to-rail connectors in a hardwood stairway handrail, 3) Development of preservative-treated cross-laminated timber: effects of panel layup and thickness on bonding performance and durability when treated with copper-azole (CA-C) and micronized copper-azole (MCA), 4) Strength and stiffness of 3-ply industrial bamboo matting, 5) Conclusion.

Page generated in 0.1215 seconds