• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

COLONIZING NORTHERN LANDSCAPES: POPULATION GENETICS AND PHYLOGEOGRAPHY OF WOOD FROGS (LITHOBATES SYLVATICUS) IN THE JAMES BAY AREA

D’Aoust-Messier, Andrée-Michelle 31 July 2013 (has links)
The genetic structuring of populations can be influenced by present processes and past events. One of the largest historical events to affect the distribution and genetic characteristics of present-day North American biota is the Pleistocene glaciation. Thus, the study of post-glacial colonization patterns of species in northern landscapes can relay important ecological information, as species had to expand their range extensively following the retreat of the glaciers and are often at the terminal end of their expansion. These species consequently exhibit the genetic fingerprints of sequential founder events, in turn decreasing the genetic variation available for adaptation. Using amphibians to investigate post-glacial range expansion is advantageous, as they have limited dispersal abilities revealing fine-scale patterns and they are thought to be one of the first vertebrates to colonize post-glacial habitat. Therefore, to model the phylogeography of a primary colonizer and the population structure of anurans in northern landscapes, population genetics analyses of wood frogs (Lithobates sylvaticus) were performed in the James Bay area. Wood frogs were sampled from 17 localities around James Bay and genetic analyses were conducted with seven microsatellite loci and mitochondrial DNA sequences of the ND2/tRNATRP genes. Results show that the post-glacial recolonization of the James Bay area by wood frogs originated from the putative refugium in western Wisconsin, an area known as the Driftless Area. Two routes were taken by founders to colonize the James Bay area: one north-west of Lake Superior, colonizing western Ontario, and one through the Upper Peninsula of Michigan, colonizing southern and eastern Ontario and western Québec. Interestingly, the meeting of the two lineages south-west of James Bay led to the establishment of a zone of higher genetic variation than expected under the founder effect hypothesis. Additionally, population structure analyses revealed the segregation of three genetic populations east, north-west, and south-west of the bay, the latter showing the highest genetic variation and likely representing a zone of secondary contact. This study shows that past events such as post-glacial range expansions can explain present patterns of genetic variation and population structure, and that studies in northern landscapes may be very useful in understanding genetic patterns throughout the range of a species.
2

Colonizing Northern Landscapes: Population Genetics and Phylogeography of Wood Frogs (Lithobates Sylvaticus) in the James Bay

D'Aoust-Messier, Andrée-Michelle 31 August 2012 (has links)
The genetic structuring of populations can be influenced by present processes and past events. One of the largest historical events to affect the distribution and genetic characteristics of present-day North American biota is the Pleistocene glaciation. Thus, the study of post-glacial colonization patterns of species in northern landscapes can relay important ecological information, as species had to expand their range extensively following the retreat of the glaciers and are often at the terminal end of their expansion. These species consequently exhibit the genetic fingerprints of sequential founder events, in turn decreasing the genetic variation available for adaptation. Using amphibians to investigate post-glacial range expansion is advantageous, as they have limited dispersal abilities revealing fine-scale patterns and they are thought to be one of the first vertebrates to colonize post-glacial habitat. Therefore, to model the phylogeography of a primary colonizer and the population structure of anurans in northern landscapes, population genetics analyses of wood frogs (Lithobates sylvaticus) were performed in the James Bay area. Wood frogs were sampled from 17 localities around James Bay and genetic analyses were conducted with seven microsatellite loci and mitochondrial DNA sequences of the ND2/tRNATRP genes. Results show that the post-glacial recolonization of the James Bay area by wood frogs originated from the putative refugium in western Wisconsin, an area known as the Driftless Area. Two routes were taken by founders to colonize the James Bay area: one north-west of Lake Superior, colonizing western Ontario, and one through the Upper Peninsula of Michigan, colonizing southern and eastern Ontario and western Québec. Interestingly, the meeting of the two lineages south-west of James Bay led to the establishment of a zone of higher genetic variation than expected under the founder effect hypothesis. Additionally, population structure analyses revealed the segregation of three genetic populations east, north-west, and south-west of the bay, the latter showing the highest genetic variation and likely representing a zone of secondary contact. This study shows that past events such as post-glacial range expansions can explain present patterns of genetic variation and population structure, and that studies in northern landscapes may be very useful in understanding genetic patterns throughout the range of a species.
3

Effects of oil sands process-affected water and substrates on wood frog (<i>Rana sylvatica</i>) eggs and tadpoles

Gupta, Niti 27 May 2009
An essential element of the reclamation strategy proposed by the oil sands mining industry in northern Alberta, Canada, includes the creation of wetlands for the bioremediation of mining waste materials. The mining process used to extract oil from these deposits results in the production of large volumes of process-affected water (OSPW) and sediments (OSPS), which must be incorporated into wetlands as a component of the reclaimed landscapes. Wood frogs (<i>Rana sylvatica</i>) are an abundant native species that might be expected to inhabit these reclaimed wetlands. The objective of this study was to determine potential detrimental effects of OSPW and OSPS on the growth and development of wood frogs. Several morphological (weight, length, condition factor) and biochemical (whole body tadpole thyroid hormone and triglyceride concentrations and metamorph hepatic glycogen concentration) endpoints were assessed in conjunction with hatchability and survivability of wood frog eggs and tadpoles exposed to process-affected materials (OSPM) under field and laboratory conditions.<p> As part of this study, assay techniques were optimized to enable simultaneous measurement of whole body 3,5,3-triiodothyronine (T3), thyroxine (T4) and triglyceride (TG) concentrations in wood frog tadpoles. These assays were used to monitor changes in T3, T4 and TG in wood frog tadpoles during development from hatching to metamorphosis (Gosner stages 19-46), to establish baseline levels for subsequent application of the assays to evaluate contaminant effects. The results indicated peak T3 and T4 concentrations occurred during metamorphic climax (Gosner stages 40-46) and prometamorphosis (Gosner stages 31-40), respectively. Maximal TG concentrations were also observed during prometamorphosis. These assays were further employed to assess body condition and development in wood frogs during a field study in 2005, and the following laboratory studies in 2006 and 2007.<p> In summer 2005, 29 reclaimed and five unimpacted wetlands were monitored for use by native amphibians, and tadpoles and newly-metamorphosed wood frogs were collected from a subset of sites as a preliminary assessment of contaminant effects. Endpoints such as metamorph hepatic glycogen and whole body tadpole T3, T4 and triglyceride concentrations were compared among six impacted and three reference wetlands. The surveys indicated 60% of OSPW-impacted wetlands were used by breeding adult amphibians, while wood frog tadpoles and newly-metamorphosed frogs were observed in 37 and 30% of OSPW wetlands, respectively. In general, lower whole body tadpole T3 and triglyceride concentrations were observed in wood frogs from wetlands containing OSPM. In contrast, hepatic glycogen concentrations in newly-metamorphosed frogs and whole body tadpole T4 and T3/T4 concentrations were comparable among the reference and impacted wetlands. In addition, the differences observed in total body weight and length of tadpoles and newly-metamorphosed wood frogs among OSPM and reference sites were likely due to minor differences in developmental stages of the animals collected from the various wetlands, rather than any contaminant effect.<p> In 2006 and 2007, wood frog eggs and tadpoles were exposed to several sources of OSPW and OSPS collected from reclaimed Suncor and Syncrude wetlands under controlled laboratory conditions. Hatchability was reduced in eggs exposed to water from only one of the OSPW sites, compared with the other process-affected ponds and the control water (P<0.05). In contrast, survivability of tadpoles was significantly reduced (P<0.05) in all the impacted sites in both years, with nearly all OSPW sites having <10% survival. The exposure study evaluated the toxicity of five types of OSPS. Results indicated no impact of OSPS exposure on survivability of tadpoles, but showed reduced whole body weight (in three OSPS treatments), length (in two OSPS treatments) and body condition (in one OSPS) of tadpoles exposed to process-affected substrates tested (P<0.05). Whole body T3 and T4 concentrations in tadpoles from OSPS treatments were not different from the control treatment, but tadpole TG concentration was reduced in groups exposed to two impacted substrates (P<0.05). Water quality measurements, including determination of dissolved metals were conducted in an initial attempt to relate any potential toxic effect on wood frog growth and development to specific contaminants.<p> Results of the laboratory studies strongly suggest that exposure to OSPW and OSPS may adversely affect wood frog growth and survival. However, these findings were not entirely consistent with field observations and results of concurrent mesocosm studies. Further research is therefore needed to fully evaluate the suitability of reclaimed oil sands wetlands to support indigenous amphibian population. Future work should focus on the cumulative effects of water and substrates, as well as the effect of OSPM ageing on acute and chronic toxicity.
4

Effects of oil sands process-affected water and substrates on wood frog (<i>Rana sylvatica</i>) eggs and tadpoles

Gupta, Niti 27 May 2009 (has links)
An essential element of the reclamation strategy proposed by the oil sands mining industry in northern Alberta, Canada, includes the creation of wetlands for the bioremediation of mining waste materials. The mining process used to extract oil from these deposits results in the production of large volumes of process-affected water (OSPW) and sediments (OSPS), which must be incorporated into wetlands as a component of the reclaimed landscapes. Wood frogs (<i>Rana sylvatica</i>) are an abundant native species that might be expected to inhabit these reclaimed wetlands. The objective of this study was to determine potential detrimental effects of OSPW and OSPS on the growth and development of wood frogs. Several morphological (weight, length, condition factor) and biochemical (whole body tadpole thyroid hormone and triglyceride concentrations and metamorph hepatic glycogen concentration) endpoints were assessed in conjunction with hatchability and survivability of wood frog eggs and tadpoles exposed to process-affected materials (OSPM) under field and laboratory conditions.<p> As part of this study, assay techniques were optimized to enable simultaneous measurement of whole body 3,5,3-triiodothyronine (T3), thyroxine (T4) and triglyceride (TG) concentrations in wood frog tadpoles. These assays were used to monitor changes in T3, T4 and TG in wood frog tadpoles during development from hatching to metamorphosis (Gosner stages 19-46), to establish baseline levels for subsequent application of the assays to evaluate contaminant effects. The results indicated peak T3 and T4 concentrations occurred during metamorphic climax (Gosner stages 40-46) and prometamorphosis (Gosner stages 31-40), respectively. Maximal TG concentrations were also observed during prometamorphosis. These assays were further employed to assess body condition and development in wood frogs during a field study in 2005, and the following laboratory studies in 2006 and 2007.<p> In summer 2005, 29 reclaimed and five unimpacted wetlands were monitored for use by native amphibians, and tadpoles and newly-metamorphosed wood frogs were collected from a subset of sites as a preliminary assessment of contaminant effects. Endpoints such as metamorph hepatic glycogen and whole body tadpole T3, T4 and triglyceride concentrations were compared among six impacted and three reference wetlands. The surveys indicated 60% of OSPW-impacted wetlands were used by breeding adult amphibians, while wood frog tadpoles and newly-metamorphosed frogs were observed in 37 and 30% of OSPW wetlands, respectively. In general, lower whole body tadpole T3 and triglyceride concentrations were observed in wood frogs from wetlands containing OSPM. In contrast, hepatic glycogen concentrations in newly-metamorphosed frogs and whole body tadpole T4 and T3/T4 concentrations were comparable among the reference and impacted wetlands. In addition, the differences observed in total body weight and length of tadpoles and newly-metamorphosed wood frogs among OSPM and reference sites were likely due to minor differences in developmental stages of the animals collected from the various wetlands, rather than any contaminant effect.<p> In 2006 and 2007, wood frog eggs and tadpoles were exposed to several sources of OSPW and OSPS collected from reclaimed Suncor and Syncrude wetlands under controlled laboratory conditions. Hatchability was reduced in eggs exposed to water from only one of the OSPW sites, compared with the other process-affected ponds and the control water (P<0.05). In contrast, survivability of tadpoles was significantly reduced (P<0.05) in all the impacted sites in both years, with nearly all OSPW sites having <10% survival. The exposure study evaluated the toxicity of five types of OSPS. Results indicated no impact of OSPS exposure on survivability of tadpoles, but showed reduced whole body weight (in three OSPS treatments), length (in two OSPS treatments) and body condition (in one OSPS) of tadpoles exposed to process-affected substrates tested (P<0.05). Whole body T3 and T4 concentrations in tadpoles from OSPS treatments were not different from the control treatment, but tadpole TG concentration was reduced in groups exposed to two impacted substrates (P<0.05). Water quality measurements, including determination of dissolved metals were conducted in an initial attempt to relate any potential toxic effect on wood frog growth and development to specific contaminants.<p> Results of the laboratory studies strongly suggest that exposure to OSPW and OSPS may adversely affect wood frog growth and survival. However, these findings were not entirely consistent with field observations and results of concurrent mesocosm studies. Further research is therefore needed to fully evaluate the suitability of reclaimed oil sands wetlands to support indigenous amphibian population. Future work should focus on the cumulative effects of water and substrates, as well as the effect of OSPM ageing on acute and chronic toxicity.

Page generated in 0.1644 seconds