• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Understanding the history of a volcanic arc: linking geochemistry of Cenozoic volcanic cobbles from the Wrangell arc, Alaska, to upper plate and subducting slab tectonic processes

Morter, Bethany Kathleen January 1900 (has links)
Master of Science / Department of Geology / Matthew E. Brueseke / The Wrangell arc (WA) is a ~29 Ma magmatic belt, extending from south-central Alaska into the Yukon Territory, that lies above the edges and leading front of the Yakutat microplate, a buoyant oceanic plateau that is causing shallow subduction (11-16º) in the region. The WA occurs in a transition zone between “normal” Aleutian subduction to the west and dextral strike-slip tectonics to the east, accomplished by the Totschunda, Denali, and Duke River faults. This geologic setting offers a chance to study the interrelations between subduction, strike-slip motion, and slab-edge magmatic processes in a relatively well-exposed arc. We implemented a novel technique of applying geochemical and geochronologic analyses on volcanic cobbles collected from glacio-fluvial systems (rivers, streams, and glaciers) encircling/draining the WA. Our primary objective is to integrate our cobble datasets with the existing bedrock and detrital sand records to develop a comprehensive understanding of WA magmatism through time and space. Our secondary objective is to test the validity of this novel technique for reproducing what is documented from bedrock samples and its potential for utilization in other locations. This study provides new major element data from 215 samples and trace element data from 236 samples collected from 17 major rivers that drain from the modern western and central WA (this study excludes the eastern WA). This study also provides new age data from a total of 119 samples from 10 major rivers. New geochronology of modern detrital volcanic cobbles and sand/zircons reveal that the WA initiated at ~29 Ma and that magmatism migrated northwestward through time. Cobble ages and locations across the arc agree with the northwestward progression of magmatism previously identified by Richter et al. (1990). Forty-seven cobbles are dated <~1 Ma and only nine cobbles are dated 29 – ~20 Ma, whereas there are no cobbles from 17 – ~13 Ma. Geochemical data reveal similarities between our data and that of the <~5 Ma WA defined by Preece and Hart (2004): Trend 1 (transitional-tholeiitic), Trend 2a (calc-alkaline), Trend 2b (calc-alkaline, adakite-like). Therefore, we use the geochemical framework defined in Preece and Hart (2004) to contextualize spatio-temporal trends of magmatism and tectonic implications in the WA during its ~29 m.y. history. Trend 2a and 2b cobbles are spatially and temporally ubiquitous in the WA, indicating that subduction and partial slab melting have been the dominant tectonic processes throughout WA history. Trend 1 cobbles are not found in southwestern WA rivers and are temporally restricted to ~11 – ~6 Ma and <1 Ma, suggesting intra-arc extension has occurred in discrete periods during WA history. These conclusions are confirmed by the existing (Richter et al., 1990; Skulski et al., 1991; 1992; Preece and Hart, 2004; Trop et al., 2012) and new (Berkelhammer, 2017; Weber et al., 2017) bedrock records. Finally, this study shows that the sampled cobble lithologies largely reproduce the known bedrock record in geochemical, temporal, and spatial contexts, which suggests the novel methodology applied here can be used in other locations where field conditions limit access to bedrock.
2

Initiation of the Wrangell arc: a record of tectonic changes in an arc-transform junction revealed by new geochemistry and geochronology of the ~29–18 Ma Sonya Creek volcanic field, Alaska

Berkelhammer, Samuel Ethan January 1900 (has links)
Master of Science / Department of Geology / Matthew E. Brueseke / The Sonya Creek volcanic field (SCVF) contains the oldest in situ magmatic products in the ~29 Ma–modern Wrangell arc (WA) in south-central Alaska. The WA is located within a transition zone between Aleutian subduction to the west and dextral strike-slip tectonics along the Queen Charlotte-Fairweather and Denali-Duke River fault systems to the east. WA magmatism is due to the shallow subduction (11–16°) of the Yakutat microplate. New ⁴⁰Ar/³⁹Ar and U-Pb geochronology of bedrock and modern river sediments shows that SCVF magmatism occurred from ~29–18 Ma. Volcanic units are divided based on field mapping, physical characteristics, geochronology, and new major and trace element geochemistry. A dacite dome yields a ~29 Ma ⁴⁰Ar/³⁹Ar age and was followed by eruptions of basaltic-andesite to dacite lavas and domes (~28–23 Ma Rocker Creek lavas and domes) that record hydrous, subduction-related, calc-alkaline magmatism with an apparent adakite-like component. This was followed by a westward shift to continued subduction-related magmatism without the adakite-like component (e.g., mantle wedge melting), represented by ~23–21 Ma basaltic-andesite to dacite domes and associated diorites (“intermediate domes”). These eruptions were followed by a westward shift in volcanism to anhydrous, transitional, basaltic-andesite to rhyolite lavas of the ~23–18 Ma Sonya Creek shield volcano (Cabin Creek lavas), including a rhyolite ignimbrite unit (~19 Ma Flat Top tuff), recording the influence of local intra-arc extension. The end of SCVF activity was marked by a southward shift in volcanism back to hydrous calc-alkaline lavas at ~22–19 Ma (Young Creek rocks and Border Lavas). SCVF geochemical types are very similar to those from the <5 WA, and no alkaline lavas that characterize the ~18–10 Ma Yukon WA are present. Sr-Nd-Pb-Hf radiogenic isotope data suggest the SCVF data were generated by contamination of a depleted mantle wedge by ~0.2–4% subducted terrigenous sediment, agreeing with geologic evidence from many places along the southern Alaskan margin. Our combined dataset reveals geochemical and spatial transitions through the lifetime of the SCVF, which record changing tectonic processes during the early evolution of the WA. The earliest SCVF phases suggest the initiation of Yakutat microplate subduction. Early SCVF igneous rocks are also chemically similar to hypabyssal intrusive rocks of similar ages that crop out to the west; together these ~29–20 Ma rocks imply that WA initiation occurred over a <100 km belt, ~50–60 km inboard from the modern WA and current loci of arc magmatism that extends from Mt. Drum to Mt. Churchill.

Page generated in 0.0685 seconds