• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

PHASE CENTER MEASUREMENTS FOR A WRAP-AROUND GPS ANTENNA

Meyer, Steven J., Kujiraoka, Scott R. 10 1900 (has links)
International Telemetering Conference Proceedings / October 23-26, 2000 / Town & Country Hotel and Conference Center, San Diego, California / Global Positioning System (GPS) technology is being used as a sensor in telemetry systems to provide time, space and position information (TSPI) as well as end game or vector scoring. The accuracy of these measurements depends on precisely locating the phase center of the GPS antenna. A procedure has not currently been addressed by anyone to measure the phase center of a conformal wrap-around GPS antenna. This paper will discuss some techniques on determining the antenna phase center.
2

PHASE CENTER PROBLEMS WITH WRAP-AROUND ANTENNAS

Meyer, Steven J., Kujiraoka, Scott R. 10 1900 (has links)
International Telemetering Conference Proceedings / October 21, 2002 / Town & Country Hotel and Conference Center, San Diego, California / The Joint Advanced Missile Instrumentation (JAMI) program is integrating Global Positioning System (GPS) technology into missile telemetry systems. The weakest link appears to be the GPS antenna. The antenna on a missile is required to be flush mounted for aerodynamic reasons. Due to the missile’s tendency to roll, the antenna needs to be a multi-element omnidirectional antenna array. Therefore an antenna used on missiles is a wrap-around antenna since it will meet the flush mount and rolling requirements by giving omnidirectional coverage. JAMI has used readily available techniques for designing wrap-around telemetry antennas to develop a GPS wrap-around antenna and has discovered a major problem. The Phase Center of a wrap-around antenna tends to be a surface, not a point, and not necessarily at the centerline of the missile body. GPS measurements have been conducted to determine the Phase Center of the antenna. When the Phase Center is large, the GPS receiver perceives it as multipath and integer ambiguities cannot be resolved. This paper addresses the problems that have been uncovered and outlines the steps that are planned to resolve them.

Page generated in 0.0633 seconds