• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Automating IEEE 1500 wrapper insertion

Huss, Niklas January 2009 (has links)
<p>Integrated circuits (ICs) are becoming increasingly complex, which leadsto long design and development times. Designing ICs in a modular fashionis efficient to shorten design and development times. Due to imperfection inIC manufacturing, all ICs are tested. An IC designed in a modular fashioncan be tested in a modular manner. To enable modular test, the IEEE 1500std has been developed to enable isolation and access of modules. Whilethe IEEE 1500 std is adopted, there is yet no commercial tool available.</p><p>In this thesis we have (1) developed an IEEE 1500 std wrapper and (2)included it in a design flow based on a commercial tool, and developed scriptto automate the process. Given a module in VHDL, our design automationautomatically makes synthesis, scan insertion, test generation (ATPG), andwrapper insertion. We have applied the design flow to several benchmarksand through simulation verified the correctness.</p>
2

Automating IEEE 1500 wrapper insertion

Huss, Niklas January 2009 (has links)
Integrated circuits (ICs) are becoming increasingly complex, which leadsto long design and development times. Designing ICs in a modular fashionis efficient to shorten design and development times. Due to imperfection inIC manufacturing, all ICs are tested. An IC designed in a modular fashioncan be tested in a modular manner. To enable modular test, the IEEE 1500std has been developed to enable isolation and access of modules. Whilethe IEEE 1500 std is adopted, there is yet no commercial tool available. In this thesis we have (1) developed an IEEE 1500 std wrapper and (2)included it in a design flow based on a commercial tool, and developed scriptto automate the process. Given a module in VHDL, our design automationautomatically makes synthesis, scan insertion, test generation (ATPG), andwrapper insertion. We have applied the design flow to several benchmarksand through simulation verified the correctness.

Page generated in 0.1075 seconds