Spelling suggestions: "subject:"X yay diffraction"" "subject:"X aay diffraction""
131 |
Comparison of Two X-ray Detection Systems Used to Investigate Properties of Normal and Malignant Breast TissuesAlaroui, Duaa 06 1900 (has links)
The present study was implemented using two different X-ray detection systems; a monochromatic X-ray system for X-ray Fluorescence (XRF) and Angular Dispersive X-ray Diffraction (ADXRD) techniques, and a combined Polarized Energy Dispersive X-ray Fluorescence (PEDXRF) and Energy Dispersive X-ray Diffraction (EDXRD) system. As both of these systems involve different techniques, the primary objective of this study was to evaluate the performance and accuracy of each system using results achieved from XRF measurements. The assessment of the two systems was carried out by investigating invasive ductal carcinoma (IDC) of breast and normal surrounding breast tissues. The results established from the two XRF systems are in a very good agreement with each other. The statistical analysis reveals a significant and measurable increase at P<0.01 in the concentration of K, Ca, Zn, Rb and Fe (P<0.05) in the tumor tissue when compared with the healthy tissue. However, the levels of Cl, Cu and Br attained by both systems have not demonstrated a statistically significant difference between the normal and cancerous tissues. Investigating the structural components of the same breast tissues using of the X-ray Diffraction (XRD) spectrometers incorporated in both systems indicated a statistically significant difference in the components of normal and malignant samples. Furthermore, the results have shown a remarkable increase in the fibrous and water contents of the tumour tissue at P<0.01, and a significant increase in the adipose content of the normal tissue at P<0.01. The results acquired from both XRD approaches were shown to be statistically compatible with each other. Overall, the comparisons between the two X-ray detection systems have shown tremendous results for the combined PEDXRF and EDXRD system for the purpose of classifying normal and tumor breast tissues. / Thesis / Master of Science (MSc)
|
132 |
Prehnite at the Atomic Scale: Al/Si Ordering, Hydrogen Environment, and High-Pressure BehaviorDetrie, Theresa A. 10 December 2008 (has links)
The mineral prehnite, Ca2(Al,Fe,Mn)(AlSi3O10)(OH)2, is a layered structure consisting of double-sheets of (Al,Si)O4 and SiO4 tetrahedra alternating with single sheets of AlO4(OH)2 octahedra. To understand the ordering in the structure and differences between various samples of prehnite, single-crystal X-ray diffraction data at ambient conditions were collected on four single crystals of prehnite from different localities. The positions of the H atoms have been determined for the first time, from a combination of X-ray and neutron diffraction data.
The equation of state and high-pressure behavior of prehnite have been investigated using single-crystal X-ray diffraction up to 9.75(3) GPa. A second-order Birch–Murnaghan equation of state fit to the isothermal P-V data to 8.7 GPa yields a bulk modulus, K = 109.29(18) GPa. Structural data collected at high pressures indicate that the structure compresses uniformly. Above 8.7 GPa there is additional softening of the volume and the b-axis related to polyhedral tilting. However, the average structure is maintained across the transition.
Ambient and high-pressure Raman and synchrotron infrared spectra were collected from 1 bar to 20 GPa. Raman spectra measured at ambient conditions of four prehnite crystals with different compositions confirmed that there are no structural changes with different compositions. High-pressure results showed the majority of modes shift to higher frequencies (in a smooth, linear fashion) with increasing pressure. The greatest change in the spectra is the softening of the modes in the OH-stretching region above 9 GPa, thought to be related to the polyhedral tilting around the H environment. / Master of Science
|
133 |
Characterisation of the deformation mechanisms in HCP metals by combined use of X-ray imaging and diffraction techniquesNervo, Laura January 2015 (has links)
We envisage a fundamental study of the physical mechanisms (dislocation slip versus deformation twinning) involved in plastic deformation of hexagonal close-packed (HCP) metals like titanium and magnesium. A novel combination of X-ray imaging and diffraction techniques, termed X-ray diffraction contrast tomography (DCT), will be used to investigate details of the deformation process in the bulk of polycrystalline specimen. DCT provides access to the position, 3D shape, (average) orientation and elastic strain tensor of grains in polycrystalline sample volumes containing up to 1000 grains and more. Ultimately, an extension of the X-ray DCT technique is associated with a section topography methodology on the same instrument. This combination enables the measurement of local orientation and elastic strain tensors inside selected bulk grains. A very preliminary study of this approach is carried out on a magnesium alloy, underlying the current limitations and possible improvements of such approach. In this thesis, the data acquisition and analysis procedures required for this type of combined characterisation approach have been developed. The work is supported by the use of neutron diffraction, for an in-situ loading experiments, and two-dimensional electron backscatter diffraction (EBSD), for the initial microstructure of the materials and cross-validation of the results obtained with the X-ray DCT technique.
|
134 |
Open-framework Structures Built by Inorganic Clusters : Synthesis and CharacterizationChen, Hong January 2014 (has links)
Novel open-framework germanates and vanadoborates, which are constructed from typical types of clusters, have been synthesized based on different strategies. The crystal structures are solved by using single crystal X-ray diffraction (SXRD) technique or by combined techniques. Additionally, the structures of two open-framework materials, PKU-3 and PKU-16, are determined from nano-sized crystals by rotation electron diffraction (RED) combined with powder X-ray diffraction (PXRD). This thesis serves as an introduction to synthesis of open-framework germanates and vanadoborates based on different design strategies. Two germanates are obtained; SU-74 is achieved by employing a novel structure directing agent (SDA), SUT-8 is achieved by assembling the novel structure building units (SBUs) of Co@Ge14 with the introduction of cobalt ions in the synthesis. Four strategies are successfully used in construction of open-framework vanadoborates: using metal-oxo polyhedra as the linkages in SUT-6; applying the scale chemistry approach in SUT-7; employing metal-organic complexes as the linkages in SUT-12, SUT-13, SUT-14; and introducing covalent bond organic linkages into SUT-10 and SUT-11. Single crystal X-ray diffraction is used to conduct the structure determination in combination with other techniques. Furthermore, the structures of two open-framework materials, an aluminoborate PKU-3 and a germanosilicate PKU-16, are solved from nano-sized crystals using RED data. The structures are further confirmed by Rietveld refinement against PXRD data. The advantages of the RED techniques are demonstrated in two aspects. In PKU-3, the presence of seriously preferred orientation and light elements in the structure makes it difficult for structure determination by PXRD, but it is easier by RED. In PKU-16, the RED technique is used to determine its structure from the as-synthesized multi-phasic sample containing nano-sized crystals. After the structure of PKU-16 has been solved, the synthesis of this interesting phase can be optimized and pure PKU-16 can be obtained. Keywords: Open-framework, germanates, vanadoborates, aluminoborates, germanosilicates, crystal structure, hydrothermal synthesis, single crystal X-ray diffraction, rotation electron diffraction, powder X-ray diffraction
|
135 |
Alloy Development and High-Energy X-Ray Diffraction Studies of NiTiZr and NiTiHf High Temperature Shape Memory AlloysCarl, Matthew A 05 1900 (has links)
NiTi-based shape memory alloys (SMAs) offer a good combination of high-strength, ductility, corrosion resistance, and biocompatibility that has served them well and attracted the attention of many researchers and industries. The alloys unique thermo-mechanical ability to recover their initial shape after relatively large deformations by heating or upon unloading due to a characteristic reversible phase transformation makes them useful as damping devices, solid state actuators, couplings, etc. However, there is a need to increase the temperature of the characteristic phase transformation above 150 °C, especially in the aerospace industry where high temperatures are often seen. Prior researchers have shown that adding ternary elements (Pt, Pd, Au, Hf and Zr) to NiTi can increase transformation temperatures but most of these additions are extremely expensive, creating a need to produce cost-effective high temperature shape memory alloys (HTSMAs). Thus, the main objective of this research is to examine the relatively unstudied NiTiZr system for the ability to produce a cost effective and formable HTSMA. Transformation temperatures, precipitation paths, processability, and high-temperature oxidation are examined, specifically using high energy X-ray Diffraction (XRD) measurements, in NiTi-20 at.% Zr. This is followed by an in situ XRD study of the phase growth kinetics of the favorable H-phase nano precipitates, formed in NiTiHf and NiTiZr HTSMAs, based on prior thermo-mechanical processing in a commercial NiTi-15 at.% Hf HTSMA to examine the final processing methods and aging characteristics. Through this research, knowledge of the precipitation paths in NiTiZr and NiTiHf HTSMAs is extended and methods for characterization of phases and strains using high energy XRD are elucidated for future work in the field.
|
136 |
X-ray Diffraction Studies of Amorphous MaterialsPalma, Joseph John January 2013 (has links)
This thesis presents a study on two types of X-ray diffraction methodologies applied to the characterization of amorphous materials. The purpose of this study was to assess the feasibility of measuring the diffractive spectrum of amorphous materials by Energy-Dispersive X-ray Diffraction (EDXRD) utilizing Cadmium Zinc Telluride detectors. The total scattering intensity (coherent plus incoherent scatter) spectra precisely measured by high-energy Wide-Angle X-ray Scattering (WAXS) were compared to the EDXRD spectra to determine the level of agreement between the two techniques. The EDXRD spectra were constructed by applying a spectra fusing technique which combined the EDXRD spectra collected at different scattering angles rendering a continuous total scattering spectrum. The spectra fusing technique extended the momentum transfer range of the observed scattered spectrum beyond the limitations of the X-ray source and CZT detection efficiencies. Agreement between the WAXS and fused EDXRD spectra was achieved. In addition, this thesis presents the atomic pair correlation functions and coordination numbers of the first coordination shell for four hydrogen peroxide solutions of varying mass concentrations using Empirical Potential Structural Refinement (EPSR). The results are compared to the state-of-the art ad initio quantum mechanical charge field molecular dynamics (QMCF MD) model of the hydrogen peroxide in solution to support the model's predictions on why hydrogen peroxide is stable in water. The EPSR results using the coherent scattering intensity calculated from the WAXS data set predicts a hydration shell of 6.4 molecules of water surrounding hydrogen peroxide. The results also indicate that hydrogen peroxide is more likely to behave as a proton donor than acceptor. These findings are in agreement with QMCF MD model of aqueous hydrogen peroxide. / Physics
|
137 |
Studying the synthesis and reactivity of crystalline materials using in situ X-ray diffractionMoorhouse, Saul Joseph January 2013 (has links)
The use of in situ X-ray diffraction (XRD) to investigate reactions involving crystalline materials is the focus of the work described in this thesis. The development of procedures for probing chemical reactions in situ, and the application of this technique for studying in detail the mechanisms and kinetics of solid-state processes, is reported. The information in <strong>Chapter One</strong> provides a background to the in situ study of chemical reactions, with specific emphasis on the application of X-ray diffraction. Three distinct families of inorganic materials are introduced, including layered double hydroxides, Aurivillius phases, and metal-organic frameworks, and the relevance of each in contemporary technologies, is discussed. <strong>Chapter Two</strong> incorporates an account of the design, construction, and development of a chemical reaction furnace, the Oxford-Diamond In Situ Cell (ODISC), for the in situ study of solid-state reactions. The capabilities of this apparatus are discussed, including the efficient and controlled heating of samples to temperatures in excess of 1000 °C, optional sample stirring, and successful incorporation of a range of different sample vessels. Details of the implementation and optimisation of this equipment for use at Beamline I12 at the Diamond Light Source are provided. The synthesis and characterisation of a new series of ternary layered double hydroxides (LDHs) with general formula [M<sub>x</sub>M’<sub>2–x</sub>Al<sub>8</sub>(OH)<sub>24</sub>](NO<sub>3</sub>)4•yH<sub>2</sub>O (M, M’ = Zn, Ni or Co), is detailed in <strong>Chapter 3</strong>. It was discovered that these materials exhibit finely tuneable cation ratios in the intralayer regions. A study of the intercalation chemistry of this family is reported, including in situ energy-dispersive and angular-dispersive X-ray diffraction experiments. The chapter concludes with details of an in situ XRD investigation into the synthesis of these materials via direct reaction of metal salts with Al(OH)<sub>3</sub>, which was observed to proceed in four stages. <strong>Chapter Four</strong> is concerned with the molten salt synthesis and characterisation of novel cation-doped compounds with the Aurivillius structure. The limited extent of substitution on the B-sites of the parent Bi5Ti3FeO15 material was observed to be highly dependent on the nature of the di- or tri-valent substituent. The impact of varying reaction conditions, such as dwell duration and nature of the molten salt, upon pure product formation is described. A comprehensive in situ XRD investigation into the molten salt synthesis of a novel doped Aurivillius phase is detailed in <strong>Chapter Five</strong>. A discussion of the synthesis mechanism, in addition to a description of the role of the molten salt in product formation, is provided. A brief in situ XRD study of the mechanism and kinetics of crystallisation of metal-organic frameworks (MOFs) is detailed in <strong>Chapter Six</strong>. The use of ion-exchanged polymer resin beads to direct the synthesis of MOFs is probed in real time, and the route to formation is compared to that for the conventional solvothermal technique. Experimental procedures pertaining to all of the above chapters are provided in <strong>Chapter Seven</strong>. Supplementary data are included in the <strong>Appendices</strong>.
|
138 |
A crystallographic study of group I niobate perovskitesPeel, Martin D. January 2015 (has links)
In this work, X-ray and neutron powder diffraction experiments and complementary solid-state NMR spectroscopy are used to characterise NaNbO₃-based perovskite phases. Samples of NaNbO₃, KₓNa₁₋ₓNbO₃ and LiₓNa₁₋ₓNbO₃ are synthesised using a variety of techniques and subsequently characterised. For NaNbO₃, it is observed that at least two room temperature perovskite phases can co-exist, P and Q, and that each phase can be formed exclusively by manipulating the synthetic approach utilised. Phase Q can also be formed by the substitution of a small amount of K⁺ or Li⁺ for Na⁺. The room temperature phases of these materials are also analysed using NMR spectroscopy and X-ray diffraction. It is found that, for KₓNa₁₋ₓNbO₃, preferential A-site substitution of K⁺ for Na⁺ may occur, and this observation is supported using a range of NMR techniques and density functional theory calculations. The high-temperature phase behaviour of NaNbO₃ and KₓNa₁₋ₓNbO₃ (x = 0.03 to 0.08) is analysed using high-resolution neutron and X-ray powder diffraction to determine when phase changes occur and to characterise each phase. Characterisation of these materials is supported used complementary symmetry mode analysis. For the LiₓNa₁₋ₓNbO₃ perovskite system, complex phase behaviour is observed at room temperature. High-resolution neutron powder diffraction data shows that, over the range 0.08 < x < 0.20, phase Q may co-exist with a rhombohedral phase, with the proportions of the two highly dependent upon the synthetic conditions used. Furthermore, using X-ray diffraction and NMR spectroscopy, phase Q is shown to undergo a crystal-to-crystal transition to the rhombohedral phase. For higher values of x, two compositionally-distinct rhombohedral phases are formed, termed Na-R3c and Li-R3c, as determined from neutron powder diffraction data.
|
139 |
Structure and Phase Stability of CaC2 Polymorphs, Li2C2 and Lithium Intercalated Graphite : A Revisit with High Pressure Experiments and Metal Hydride–Graphite ReactionsKonar, Sumit January 2015 (has links)
Alkali (A) and alkaline earth (AE) metals can form carbides and intercalated graphites with carbon. The carbides mostly represent acetylides which are salt-like compounds composed of C22− dumbbell anions and metal cations. Both the acetylide carbides and intercalated graphites are technologically important. Superconductivity has been observed in several intercalated graphites such as KC8 and CaC6. Li intercalated graphites are a major ingredient in Li ion batteries. CaC2 is an important commodity for producing acetylene and the fertilizer CaCN2. In spite of the extensive research on A–C and AE–C compounds, phase diagrams are largely unknown. The thermodynamic and kinetic properties of both carbides and intercalalated graphites are discussed controversially. Recent computational studies indicated that well-known carbides, like CaC2 and BaC2, are thermodynamically unstable. Additionally, computational studies predicted that acetylide carbides will generally form novel polymeric carbides (polycarbides) at high pressures. This thesis is intended to check the validity of theoretical predictions and to shed light on the complicated phase diagrams of the Li–C and the Ca–C systems. The Li–C and the Ca–C systems were investigated using well-controllable metal hydride–graphite reactions. Concerning the Li–C system, relative stabilities of the metastable lithium graphite intercalation compounds (Li-GICs) of stages I, IIa, IIb, III, IV and Id were studied close to the competing formation of the thermodynamically stable Li2C2. The stage IIa showed distinguished thermal stability. The phase Id showed thermodynamic stability and hence, was included in the Li–C phase diagram. In the Ca–C system, results from CaH2–graphite reactions indicate compositional variations between polymorphs I, II and III. The formation of CaC2 I was favored only at 1100 ◦C or higher temperature and with excess calcium, which speculates phase I as carbon deficient CaC2−δ . To explore the potential existence of polycarbides, the acetylide carbides Li2C2 and CaC2 were investigated under various pressure and temperature conditions, employing diamond anvil cells for in situ studies and multi anvil techniques for large volume synthesis. The products were characterized by a combination of diffraction and spectroscopy techniques. For both Li2C2 and CaC2, a pressure induced structural transformation was observed at relatively low pressures (10–15 GPa), which was followed by an irreversible amorphization at higher pressures (25–30 GPa). For Li2C2 the structure of the high pressure phase prior to amorphization could be elucidated. The ground state with an antifluorite Immm structure (coordination number (CN) for C22− dumbbells = 8) transforms to a phase with an anticotunnite Pnma structure (CN for C22− dumbbells = 9). Polycarbides, as predicted from theory, could not be obtained. / <p>At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 2: Manuscript.</p>
|
140 |
Synthesis, characterisation and adsorption properties of metal-organic frameworks and the structural response to functionalisation and temperatureMowat, John P. S. January 2012 (has links)
The synthesis of a scandium aluminium methylphosphonate ScAl₃(CH₃PO₃)₆ isostructural to the aluminium methylphosphonate AlMePO-α and with permanent microporosity is reported here for the first time. Structural characterisation of three lanthanide bisphosphonate structures (I,II,III) with the light lanthanides and N,N'-piperazine bis-(methylenephosphonic acid) and its 2-methyl and 2,5-dimethyl derivatives is described. The framework of structure type I shows considerable flexibility upon dehydration with a symmetry change from C2/c, a = 23.5864(2) Å, b = 12.1186(2) Å, c = 5.6613(2) Å, β = 93.040(2)˚) in the hydrated state to P2₁/n, a = 21.8361(12) Å, b = 9.3519(4) Å, c = 5.5629(3) Å, β = 96.560(4)˚ after dehydration. This cell volume reduces by 27% on dehydration and is accompanied by a change in the conformation of the piperazine ring from chair to boat configuration. The structures of type I (hydrated and dehydrated) were refined against synchrotron powder X-ray diffraction data. Despite the reversible hydration and flexibility, the structures possess no permanent porosity. Investigation of the solvothermal chemistry of scandium carboxylates identified routes to 7 framework structures 5 of which were previously unreported in the scandium system. Lower temperature solvothermal reactions using terephthalic acid (80 - 140°C using dimethylformamide and diethylformamide) yielded two scandium terephthalates, MIL-88B(Sc) and MIL-101(Sc), identified by laboratory X-ray powder diffraction. Whereas higher temperature (160 – 220°C), reactions gave MIL-53(Sc) and Sc₂BDC₃. Further study with the tri- and tetra-carboxylate linkers, trimesic acid, 3,3',5,5'-azobenzenetetracarboxylic acid and pyromellitic acid yielded MIL-100(Sc), Sc-ABTC and Sc₄PMA₃ respectively. Structural identification of MIL-100(Sc) and Sc-ABTC was performed by means of X-ray powder diffraction analysis and of Sc₄PMA₃ by single crystal X-ray diffraction. The structure of a small pore scandium terephthalate Sc₂BDC₃ was investigated as a function of temperature and of functionalization. In situ synchrotron X-ray diffraction data, collected on a Sc₂BDC₃ in vacuo, enabled a phase change from orthorhombic Fddd to monoclinic C2/c and the associated structural effects to be observed in detail. The orthorhombic structure displayed a negative thermal expansivity of 2.4 × 10⁻⁵ K⁻¹ over the temperature range 225 – 523 K which Rietveld analysis showed to be derived from carboxylate group rotation. Motion within the framework was studied by ²H wide-line and MAS NMR on deuterated Sc₂BDC₃ indicating π flips can occur in the phenyl rings above 298 K. The effects of functionalization on the Sc₂BDC₃ framework were investigated by reactions using the 2-amino- and 2-nitroterephthalic acid and gave evidence for a strong structural effect resulting from inclusion of the functional groups. The structure of Sc₂BDC₃ and the functionalised derivatives were solved using Rietveld analysis on synchrotron X-ray powder diffraction data. Sc₂(NH₂-BDC)₃ was solved using the orthorhombic Sc₂BDC₃ framework starting model and, over the temperature range studied, stayed orthorhombic Fddd. Sc₂(NO₂-BDC)₃, was shown to be monoclinic C2/c over the same temperature range, a result of the steric effects of the bulky –NO₂ group in a small pore framework. Partial ordering of the functional groups was observed in both Sc₂(NH₂-BDC)₃ and Sc₂(NO₂-BDC)₃. The strength of interaction for the Sc₂(NH₂-BDC)₃ with CO₂ was higher than that of the parent Sc₂BDC₃ due to the strong –NH₂•••CO₂ interaction. Despite the inclusion of a relatively large –NO₂ group along the walls of a channel ~4 Å in diameter the Sc₂(NO₂-BDC)₃ still showed permanent microporosity to CO₂ (2.6 mmol g⁻¹) suggesting that there must be some motion in the -NO₂ group to allow the CO₂ molecules to diffuse through the channels. The scandium analogue of the flexible terephthalate MIL-53, a competitive phase in the synthesis of Sc₂BDC₃, was prepared and characterised by Rietveld analysis on synchrotron X-ray powder diffraction data using a combination of literature structural models and models obtained from single crystal X-ray diffraction experiments. Experimental solid state ⁴⁵Sc, ¹³C and ¹H NMR data combined with NMR calculations on the structural models produced from diffraction analysis were used to identify the hydrated (MIL-53(Sc)-H₂O), calcined (MIL-53(Sc)-CAL) and high temperature (MIL-53(Sc)-HT) structures of MIL-53(Sc). Further to this the 2-nitroterephthalate derivative, MIL-53(Sc)-NO₂, was prepared and characterised using single crystal X-ray diffraction. The adsorptive properties of the parent terephthalate and the functionalised derivative were compared and in both cases showed a breathing behaviour, exemplified by steps in the adsorption isotherms. MIL-53(Sc)-CAL was found to possess a closed pore configuration in the dehydrated state, a previously unreported structural form for the MIL-53 series, and its presence can be observed in the low pressure region of the CO₂ adsorption isotherm as a non-porous plateau. The selectivity and separation properties of two MOFs, the nickel bisphosphonate, STA-12(Ni) and the scandium carboxylate, Sc₂BDC₃ were measured using breakthrough curves on mixtures of CH₄ and CO₂. The results showed both materials to be highly selective in the adsorption of CO₂ over CH₄. Column testing using a PLOT column of STA-12(Ni) and a packed column of Sc₂BDC₃ showed promising preliminary results with STA-12(Ni) displaying effective, baseline separation on low boiling point hydrocarbon mixtures (C1 – C4) while the smaller pore channels of Sc₂BDC₃ were effective in the size selective separation of higher boiling point branched and straight-chain hydrocarbons (C5 – C7).
|
Page generated in 0.1032 seconds