• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 12
  • 12
  • 12
  • 6
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Algorithms for Coherent Diffractive Imaging with X-ray Lasers

Daurer, Benedikt J. January 2017 (has links)
Coherent diffractive imaging (CDI) has become a very popular technique over the past two decades. CDI is a "lensless" imaging method which replaces the objective lens of a conventional microscope by a computational image reconstruction procedure. Its increase in popularity came together with the development of X-ray free-electron lasers (XFELs) which produce extremely bright and coherent X-rays. By facilitating these unique properties, CDI enables structure determination of non-crystalline samples at nanometre resolution and has many applications in structural biology, material science and X-ray optics among others. This work focuses on two specific CDI techniques, flash X-ray diffractive imaging (FXI) on biological samples and X-ray ptychography. While the first FXI demonstrations using soft X-rays have been quite promising, they also revealed remaining technical challenges. FXI becomes even more demanding when approaching shorter wavelengths to allow subnanometre resolution imaging. We described one of the first FXI experiments using hard X-rays and characterized the most critical components of such an experiment, namely the properties of X-ray focus, sample delivery and detectors. Based on our findings, we discussed experimental and computational strategies for FXI to overcome its current difficulties and reach its full potential. We deposited the data in the Coherent X-ray Database (CXIDB) and made our data analysis code available in a public repository. We developed algorithms targeted towards the needs of FXI experiments and implemented a software package which enables the analysis of diffraction data in real time. X-ray ptychography has developed into a very useful tool for quantitative imaging of complex materials and has found applications in many areas. However, it involves a computational reconstruction step which can be slow. Therefore, we developed a fast GPU-based ptychographic solver and combined it with a framework for real-time data processing which already starts the ptychographic reconstruction process while data is still being collected. This provides immediate feedback to the user and allows high-throughput ptychographic imaging. Finally, we have used ptychographic imaging as a method to study the wavefront of a focused XFEL beam under typical FXI conditions.  We are convinced that this work on developing strategies and algorithms for FXI and ptychography is a valuable contribution to the development of coherent diffractive imaging.
12

Interakce krátkovlnných laserových impulsů s hmotou v různých časových škálách / Interaction of short-wavelength laser pulses with matter on various time scales

Vozda, Vojtěch January 2020 (has links)
An advent of powerful sources producing intense and ultrashort laser pulses containing high-energy photons opened up a wide range of possibilities to conduct experiments formerly achievable only through theoretical calculations and models. This thesis provides a complex overview of processes which occur right after arrival of the first photons, through lattice heating, up to resolidification and formation of irreversible changes. Irradiated spots and craters formed in various materials are examined employing a wide range of microscopic and spectroscopic methods which provide a deep insight into laser-induced modifications such as detachment of a graphene layer from SiC substrate or thermally-induced diffusion of tellurium inclusions through CdTe lattice. An increased emphasis is placed on beam characterization utilizing ablation and desorption imprints in suitable solids. A proper knowledge of the beam fluence profile may serve for evaluation of diverse damage thresholds as well as for modelling of the pulse propagation or consequent retrieval of otherwise unmeasurable opacity of warm dense aluminium plasma heated to temperatures exceeding tens of thousands of Kelvins. Moreover, the method of desorption imprints is extended to accurate characterization of pulses delivered at MHz repetition rate....

Page generated in 0.3123 seconds