• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis of Power Transistor Behavioural Modeling Techniques Suitable for Narrow-band Power Amplifier Design

Amini, Amir-Reza January 2012 (has links)
The design of power amplifiers within a circuit simulator requires a good non-linear model that accurately predicts the electormagnetic behaviour of the power transistor. In recent years, a certain class of large signal frequency-dependent black-box behavioural modeling techniques known as Poly-Harmonic Distortion (PHD) models has been devised to mimic the non-linear unmatched RF transistor. These models promise a good prediction of the device behaviour under multi-harmonic periodic continuous wave inputs. This thesis describes the capabilities of the PHD modeling framework and the theoretical type of behaviour that it is capable of predicting. Specifically, the PHD framework cannot necessarily predict the response of a broadband aperiodic signal. This analysis will be performed by deriving the PHD modeling framework as a simplification of the Volterra series kernel functions under the assumption that the power transistor is operating under continuous periodic multi-harmonic voltage and current signals in a stable circuit. A PHD model will be seen as a set of describing functions that predict the response of the Device Under Test (DUT) for any given non-linear periodic continuous-wave inputs that have a specific fundamental frequency. Two popular implementations of PHD models that can be found in the literature are the X-parameter and Cardiff models. Each model formulates the describing functions of the general PHD model differently. The mathematical formulation of the X-parameter and Cardiff models will be discussed in order to provide a theoretical ground for comparing their robustness. The X-parameter model will be seen as the first-order Taylor series approximation of the PHD model describing functions around a Large Signal Operating Point (LSOP) of the device under test. The Cardiff large-signal model uses Fourier series coefficient functions that vary with the magnitude of the large signal(s) as the PHD model describing functions. This thesis will provide a breakdown of the measurement procedure required for the extraction of these models, the challenges involved in the measurement, as well as the mathematical extraction of the model coe cients from measurement data. As each of these models contain have extended versions that enhance the predictive capability of the model under stronger nonlinear modes of operation, a comparison is used to represent the cost of increasing model accuracy as a function of the increasing model complexity for each model. The order of complexity of each model can manifest itself in terms of the mathematical formulation, the number of parameters required and the measurement time that is required to extract each model for a given DUT. This comparison will fairly assess the relative strengths and weaknesses of each model.
2

Analysis of Power Transistor Behavioural Modeling Techniques Suitable for Narrow-band Power Amplifier Design

Amini, Amir-Reza January 2012 (has links)
The design of power amplifiers within a circuit simulator requires a good non-linear model that accurately predicts the electormagnetic behaviour of the power transistor. In recent years, a certain class of large signal frequency-dependent black-box behavioural modeling techniques known as Poly-Harmonic Distortion (PHD) models has been devised to mimic the non-linear unmatched RF transistor. These models promise a good prediction of the device behaviour under multi-harmonic periodic continuous wave inputs. This thesis describes the capabilities of the PHD modeling framework and the theoretical type of behaviour that it is capable of predicting. Specifically, the PHD framework cannot necessarily predict the response of a broadband aperiodic signal. This analysis will be performed by deriving the PHD modeling framework as a simplification of the Volterra series kernel functions under the assumption that the power transistor is operating under continuous periodic multi-harmonic voltage and current signals in a stable circuit. A PHD model will be seen as a set of describing functions that predict the response of the Device Under Test (DUT) for any given non-linear periodic continuous-wave inputs that have a specific fundamental frequency. Two popular implementations of PHD models that can be found in the literature are the X-parameter and Cardiff models. Each model formulates the describing functions of the general PHD model differently. The mathematical formulation of the X-parameter and Cardiff models will be discussed in order to provide a theoretical ground for comparing their robustness. The X-parameter model will be seen as the first-order Taylor series approximation of the PHD model describing functions around a Large Signal Operating Point (LSOP) of the device under test. The Cardiff large-signal model uses Fourier series coefficient functions that vary with the magnitude of the large signal(s) as the PHD model describing functions. This thesis will provide a breakdown of the measurement procedure required for the extraction of these models, the challenges involved in the measurement, as well as the mathematical extraction of the model coe cients from measurement data. As each of these models contain have extended versions that enhance the predictive capability of the model under stronger nonlinear modes of operation, a comparison is used to represent the cost of increasing model accuracy as a function of the increasing model complexity for each model. The order of complexity of each model can manifest itself in terms of the mathematical formulation, the number of parameters required and the measurement time that is required to extract each model for a given DUT. This comparison will fairly assess the relative strengths and weaknesses of each model.
3

Obten??o dos par?metros-x de estruturas planares

Nascimento, Pedro Ivo de Araujo do 11 December 2012 (has links)
Made available in DSpace on 2014-12-17T14:56:12Z (GMT). No. of bitstreams: 1 PedroIAN_DISSERT.pdf: 1986241 bytes, checksum: 386b7b9f50f9765c6f2575f4e58ea4e5 (MD5) Previous issue date: 2012-12-11 / Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico / Due to major progress of communication system in the last decades, need for more precise characterization of used components. The S-parameters modeling has been used to characterization, simulation and test of communication system. However, limitation of S-parameters to model nonlinear system has created new modeling systems that include the nonlinear characteristics. The polyharmonic distortion modeling is a characterizationg technique for nonlinear systems that has been growing up due to praticity and similarity with S-parameters. This work presents analysis the polyharmonic distortion modeling, the test bench development for simulation of planar structure and planar structure characterization with X-parameters / O grande desenvolvimento dos sistemas de comunica??o nas ?ltimas d?cadas trouxe a necessidade de uma caracteriza??o cada vez mais precisa dos componentes utilizados. A modelagem por meio de par?metros-S ? utilizada para caracteriza??o, simula??o e testes de sistemas de comunica??o desde meados dos anos 60. Contudo a limita??o dos par?metros-S para sistemas lineares fez crescer a necessidade por novos tipos de parametriza??es que incluam as caracter?sticas de sistemas n?o lineares. A modelagem por distor??o poli-harm?nica ? uma t?cnica de caracteriza??o aplicada a sistemas n?o lineares que vem ganhando espa?o na literatura por sua praticidade e semelhan?a conceitual com os par?metros-S. Este trabalho apresentar? uma an?lise da modelagem por distor??o harm?nica, o desenvolvimento de um banco de testes para simula??o de estruturas planares e a caracteriza??o destas estruturas por meio de par?metros-X. Com isso pretende-se analisar a utiliza??o, precis?o e efici?ncia da modelagem por distor??o poli-harm?nica para estruturas planares

Page generated in 0.4633 seconds