• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Transport and Magnetic Properties of Pr1-xBa2+xCu3O7

Hong, I-Po 27 July 2000 (has links)
Since the discovery of cuprate superconductors, PrBa2Cu3O7 (Pr123) has attracted much attention due to its nonsuperconductivity and other anomalies. The very recent reports on superconducting Pr123 instead of putting an end of this issue, virtually stimulate more controversies. One of the proposed explanations for the recently observed superconductivity in Pr123 is that the samples could be Ba-rich Pr123 to investigate this possibility, we prepared Pr1-xBa2+xCu3O7 (x=1~0.3) and Pr1-xCaxBa2Cu3O7 (x=0~0.6) as comparison. X-ray absorption near edge spectroscopy (XANES) indicates an increase in carrier concentration with Ba and Ca doping, which is consistent with resistivity and thermoelectric power(TEP) data. However, carriers are introduced in a peculiar why rather than simply add into CuO2 plane.
2

The physical properties of hydrogenated Co-doped ZnO thin films deposited at room temperature by RF-magnetron sputtering system

Lin, Yu-Tsung 07 September 2011 (has links)
The roles of hydrogen induced defects in pure ZnO has been studied extensively. However, in a transition metal, such as Co, doped ZnO thin films the effect of hydrogen in electric conduction and magnetic coupling is still unclear and needs further study. Recently model predicts that hydrogen can be a shallow donor as well as an agent to induce ferromagnetism coupling between two adjacent Co ions which substitute the Zn sites at room temperature in a ZnO sample with a high Co doping ratio. However, the experimental supports is rare. In this study, Co-doped(5%) ZnO films are grown by a RF-magnetron sputtering system on glass substrate at room temperature. The growth condition is fixed for RF power in 200W, working press of 70 mtorr and various mixing ratio of H2/Ar+H2 gas. The crystal structure, electric and optical properties and the influence of vacuum annealing on the samples are studied. In this research, we found that the doping of hydrogen in Co-doped ZnO thin films truly increases the electric conductivity which is proportional to the H2/(Ar+H2) ratio. When the ratio of hydrogen is low, the (002) peak taken by a Glazing Angle X-ray Diffractometer dominates, while increasing hydrogen ratio other diffraction peaks appear, indicating an enhancement of crystal structure in all directions, and grain sizes and unit cell volume decrease. From the optical transmittance measurement, it is found that the color of films turned into metallic like and the optical band gap increases linearly with H2 ratio which can be attributed to the Burstein-Moss effect that corresponds to the increasing of carriers in the conduction band by doping of H2. The transmittance data provides the information of the ratio of crystalline and amorphous, which can also be correlated to the AFM results. When the H2 ratio is higher than 30%, more crystals and larger sizes of grains were formed in the films, such that carriers did not need to pass grain boundaries so frequently and experienced less scattering that was actually improve the electric conductivity. The electric conductivity can be even improved by post annealing in H2 environment. Moreover, the Magnetic circular dichroism (MCD) measurement shows that the Co2+ ions does truly substitute on Zn sited in Td symmetry during thin film deposition. The resistance measurement as a function of temperature found the hydrogenated Co-doped thin films are semiconductor conductive. More works are needed to determine the magnetization, identify second phases and Vo by SQUID and X-ray photoelectron spectroscopy.
3

Study of anomalous electric and magnetic behaviors of the 3dtransition metal oxides by X-ray and Neutron scattering techniques

Wu, Chun-Pin 19 February 2011 (has links)
In this thesis, we have performed systematical study of anomalous electric and magnetic behaviors of the 3d transition metal oxides; colossal magnetoresistance (La1−xRxMnO3 where R is a divalent alkaline earth ion) and Multiferroic (Ho1-xLaxMn2O5) systems by X-ray and Neutron scattering techniques. In our study, the enhancement of the transfer temperature for La0.8Ba0.2MnO3 under strain effect from the SrTiO3 substrate could be possible due to two reasons which one is Sr diffusion from SrTiO3 substructure, and other one is the octahedral MnO6 high symmetry are increasing. We focus the intrinsic strain effect on La0.67Ca0.33MnO3 and La0.8Ba0.2MnO3 films, and findings show that due to the different ionic sizes of doped Ca or Ba ions, the strain effect acts differently in the way it deforms. The interfacial strain effect produces opposite influences on the lattice symmetry, the average Mn¡VO bond lengths, the average oxygen disorders, the coupling symmetries inside and in the vicinity of the MnO6 octahedrons, as well as producing an opposing trend in metal-insulator and magnetic transition temperatures of the strained La0.67Ca0.33MnO3 and La0.8Ba0.2MnO3 films. The strain effects on the electronic structures of La0.67Ca0.33MnO3 and La0.8Ba0.2MnO3 thin films have been studied by O K-edge x-ray absorption near edge structure (XANES) spectroscopy. For La0.67Ca0.33MnO3, the first-principles calculations reveal that the features in the XANES spectra are associated with hybridized states between O 2p and Mn minority-spin 3d t2g and eg, La 5d/Ca 3d, and Mn 4s/Ca 4p states. An analysis of these features shows that the tensile strain decreases substantially La¡VO and Ca¡VO hybridization and TC for La0.67Ca0.33MnO3. For La0.8Ba0.2MnO3, the small compressive strain enhances slightly La¡VO and Ba¡VO hybridization and TC. In this thesis, the influence of the local structure distortion on the magnetic transition in La doped HoMn2O5 Multiferroics has been investigated systematically. The orthorhombic crystal structure of Ho1−xLaxMn2O5 is maintained up to x¡Ø0.2 but decomposed into multiphase for x¡Ù0.25. By doping La ions to a concentration of 0.1¡Øx¡Ø0.2, the formation of the RMnO3 1(13) phase can be suppressed and single-phase Ho1−xLaxMn2O5 (0.1¡Øx¡Ø0.2) compounds can be formed under 1 atm flowing oxygen. For x=0.2, a ferromagnetic FM transition at 150 K is superimposed on the paramagnetic background, which implies that the compound undergoes a ferromagnetic to antiferromagnetic (AFM) transition. This unique FM to AFM transition is observed for the first time. The FM transition is attributed to the formation of magnetic clusters in a host paramagnetic matrix. The anomalous magnetic clusters phenomena observed in Ho0.8La0.2Mn2O5 can be directly attributed to the different properties between Ho and La ions, and the differences of Ho and La ions are not only in the ionic radius but also in the electron negativity. During 90~150K, X-ray scattering diffraction presented the new addition peaks indicates the new electric density distribution, and the Neutron powder scattering diffraction (NPD) refining results show that the local structure of R-O (R: La, Ho) is un-symmetry which is conflict to the La Extended X-ray absorption fine structure (EXAFS) (which shows that the local structure of La-O becomes more symmetry than H-O. Since the refining values of the NPD are an average of entire crystal, such that it cannot tell the local changes. X-ray absorption spectrum (XAS) and EXAFS, in contrarily, can provide the local information. They implies that the temperature evolutions of the coupling strength with O 2p or unoccupied density state are opposite for the Ho and La ions in our Ho0.8La0.2Mn2O5 sample. Therefore, local change of ions position and charge redistribution happens in this specific temperature range.

Page generated in 0.095 seconds