• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of polymer nanocomposites for automotive applications

Chu, Chun 03 November 2010 (has links)
Polymer nanocomposites (PNCs) have gained significant interest because they have outstanding performance that allows cost reduction, weight reduction, and product improvement. This research study focuses on the manufacture and characterization of PNCs in order to explore their potential in automotive applications. More specifically, polypropylene (PP) nanocomposites reinforced with xGnP and nanokaolin were fabricated by manufacturing methods that optimize their performances. Exfoliated graphite nanoplatelets (xGnP) are promising nanofillers that are cost effective and multifunctional with superior mechanical, thermo-mechanical and electrical properties. Nanokaolin is a newly introduced natural mineral mind in Georgia that has not been studied as of now. PNCs reinforced with these two nanofillers were characterized in terms of mechanical, thermo-mechanical, and various other properties, and then compared to talc- reinforced PP composites, which are the current state of the art for rear bumpers used by Honda Motor. Characterization results indicated that xGnP had better performance than talc and nanokaolin. Furthermore, the addition of xGnP introduces electrical conductivity in the PNCs, leading to more potential uses for PNCs in automotive applications such as the ability to be electrostatic painted. In order to fabricate PNCs with a desired conductivity value, there is need for a design tool that can predict electrical conductivity. Existing electrical conductivity models were examined in terms of model characteristics and parameters, and model predictions were compared to the experimental data. The percolation threshold is the most important parameter in these models, but it is difficult to determine experimentally, that is why a correlation between thermo-mechanical properties and electrical conductivity is also investigated in this study.
2

Processing, Optimization And Characterization Of Fire Retardant Polymer Nanocomposites

Zhuge, Jinfeng 01 January 2010 (has links)
Fiber reinforced polymeric composites (FRPC) have superior physical and mechanical properties, such as high specific strength, light weight, and good fatigue and corrosion resistance. They have become competitive engineering materials to replace conventional metallic materials in many important sectors of industry such as aircraft, naval constructions, ships, buildings, transportation, electrical and electronics components, and offshore structures. However, since FRPC contain polymer matrix, the polymer composites and their structures are combustible. FRPC will degrade, decompose, and sometimes yield toxic gases at high temperature or subject to fire conditions. The objective of this study is to design and optimize fire retardant nanopaper by utilizing the synergistic effects of different nanoparticles. A paper-making technique that combined carbon nanofiber, nanoclay, polyhedral oligomeric silsesquioxanes, graphite nanoplatelet, and ammonium polyphosphate into self-standing nanopaper was developed. The fire retardant nanopaper was further incorporated into the polymer matrix, in conjunction with continuous fiber mats, through resin transfer molding process to improve fire retardant performance of structural composites. The morphology, thermal stability, and flammability of polymer composites coated with hybrid nanopaper were studied. The cone calorimeter test results indicated that the peak heat release rate of the composites coated with a CNF-clay nanopaper was reduced by 60.5%. The compact char material formed on the surface of the residues of the CNF-clay nanopaper was analyzed to understand the fire retardant mechanism of the nanopaper. The financial support from Office of Naval Research is acklowdged.

Page generated in 0.0188 seconds