• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Adapting a Beam-Based Rotordynamics Model to Accept a General Three-Dimensional Finite-Element Casing Model

James, Stephen M. 2010 May 1900 (has links)
The subject of this thesis is an extension of a two-dimensional, axisymmetric, Timoshenko-beam finite-element rotordynamic code to include a three-dimensional non-axisymmetric solid-element casing model. Axisymmetric beams are sufficient to model rotors. Spring and damper forces provide the interface between the rotor and its casing and capture the dynamics of the full model. However, axisymmetric beams limit the modeling of real-case machine structures, where the casing is not axisymmetric. Axisymmetric and non-axisymmetric 3D finite element casing structures are modeled. These structures are then reduced using a technique called substructuring. Modal equations are developed for axisymmetric and non-axisymmetric casing models. In a 3D non-axisymmetric model, structural dynamics modes can be modeled by lateral modes in two orthogonal planes. Modal information of the complex 3D casing structures are generated, and then incorporated into the 2D code after a series of pre-processing steps. A reduction method called Component Mode Synthesis (CMS) is used to reduce the large dimensionality involved in calculation of rotordynamic coefficients. The results from the casing structures are merged with the rotor model to create a combined rotor-casing model. The analysis of the combined structure shows that there is a difference in the natural frequencies and unbalance response between the model that uses symmetrical casing and the one that uses non-axisymmetric casing. XLTRC2 is used as an example of a two-dimensional axisymmetric beam-element code. ANSYS is used as a code to build three-dimensional non-axisymmetric solid-element casing models. The work done in this thesis opens the scope to incorporate complex non-axisymmetric casing models with XLTRC2.
2

Dynamika rotorů moderních turbodmychadel / Rotordynamics of Modern Turbocharger

Fryščok, Tomáš Unknown Date (has links)
This dissertation thesis consists rotordynamics of modern turbocharger. First part begins with prediction of critical speed, prediction of onset instability of oil whirl and oil whip by XLTRC2 and comparison with measured data (Cascade diagram, shaft motion, FFT analysis). List of measurement method for the detection of the natural frequency of turbocharger (EMA). Create software for long term monitoring and recording and output data size reduction. Detection of critical speed by defined measurement methodology without using software simulation with measured data from the Cascade diagram, move the rotor shaft motion in the bearing, FFT analysis and results from measurements of natural frequencies. Comparison of predicted data (critical speed, prediction of onset instability) program XLTRC2 with the values measured by this approach measurement (waterfall diagram, shaft motion, FFT analysis)

Page generated in 0.0226 seconds