Spelling suggestions: "subject:"XML 4hupstream""
1 |
Continuously Providing Approximate Results under Limited Resources: Load Shedding and Spilling in XML StreamsWei, Mingzhu 18 December 2011 (has links)
"
Because of the high volume and unpredictable arrival rates, stream processing systems may not always be able to keep up with the input data streams, resulting in buffer overflow and uncontrolled loss of data. To continuously supply online results, two alternate solutions to tackle this problem of unpredictable failures of such overloaded systems can be identified. One technique, called load shedding, drops some fractions of data from the input stream to reduce the memory and CPU requirements of the workload. However, dropping some portions of the input data means that the accuracy of the output is reduced since some data is lost. To produce eventually complete results, the second technique, called data spilling, pushes some fractions of data to persistent storage temporarily when the processing speed cannot keep up with the arrival rate. The processing of the disk resident data is then postponed until a later time when system resources become available. This dissertation explores these load reduction technologies in the context of XML stream systems.
Load shedding in the specific context of XML streams poses several unique opportunities and challenges. Since XML data is hierarchical, subelements, extracted from different positions of the XML tree structure, may vary in their importance. Further, dropping different subelements may vary in their savings of storage and computation. Hence, unlike prior work in the literature that drops data completely or not at all, in this dissertation we introduce the notion of structure-oriented load shedding, meaning selectively some XML subelements are shed from the possibly complex XML objects in the XML stream. First we develop a preference model that enables users to specify the relative importance of preserving different subelements within the XML result structure. This transforms shedding into the problem of rewriting the user query into shed queries that return approximate answers with their utility as measured by the user preference model. Our optimizer finds the appropriate shed queries to maximize the output utility driven by our structure-based preference model under the limitation of available computation resources. The experimental results demonstrate that our proposed XML-specific shedding solution consistently achieves higher utility results compared to the existing relational shedding techniques.
Second, we introduces structure-based spilling, a spilling technique customized for XML streams by considering the spilling of partial substructures of possibly complex XML elements. Several new challenges caused by structure-based spilling are addressed. When a path is spilled, multiple other paths may be affected. We categorize varying types of spilling side effects on the query caused by spilling. How to execute the reduced query to produce the correct runtime output is also studied. Three optimization strategies are developed to select the reduced query that maximizes the output quality. We also examine the clean-up stage to guarantee that an entire result set is eventually generated by producing supplementary results to complement the partial results output earlier. The experimental study demonstrates that our proposed solutions consistently achieve higher quality results compared to the state-of-the-art techniques.
Third, we design an integrated framework that combines both shedding and spilling policies into one comprehensive methodology. Decisions on the choice of whether to shed or spill data may be affected by the application needs and data arrival patterns. For some input data, it may be worth to flush it to disk if a delayed output of its result will be important, while other data would best directly dropped from the system given that a delayed delivery of these results would no longer be meaningful to the application. Therefore we need sophisticated technologies capable of deploying both shedding and spilling techniques within one integrated strategy with the ability to deliver the most appropriate decision customers need for each specific circumstance. We propose a novel flexible framework for structure-based shed and spill approaches, applicable in any XML stream system. We propose a solution space that represents all the shed and spill candidates. An age-based quality model is proposed for evaluating the output quality for different reduced query and supplementary query pairs. We also propose a family of four optimization strategies, OptF, OptSmart, HiX and Fex. OptF and OptSmart are both guaranteed to identify an optimal solution of reduced and supplementary query pair, with OptSmart exhibiting significantly less overhead than OptF. HiX and Fex use heuristic-based approaches that are much more efficient than OptF and OptSmart. "
|
2 |
Automaton Meet Algebra: A Hybrid Paradigm for Efficiently Processing XQuery over XML StreamSu, Hong 30 January 2006 (has links)
XML stream applications bring the challenge of efficiently processing queries on sequentially accessible token-based data streams. The automaton paradigm is naturally suited for pattern retrieval on tokenized XML streams, but requires patches for implementing the filtering or restructuring functionalities common for the XML query languages. In contrast, the algebraic paradigm is well-established for processing self-contained tuples. However, it does not traditionally support token inputs. This dissertation proposes a framework called Raindrop, which accommodates both the automaton and algebra paradigms to take advantage of both. First, we propose an architecture for Raindrop. Raindrop is an algebra framework that models queries at different abstraction levels. We represent the token-based automaton computations as an algebraic subplan at the high level while exposing the automaton details at the low level. The algebraic subplan modeling automaton computations can thus be integrated with the algebraic subplan modeling the non-automaton computations. Second, we explore a novel optimization opportunity. Other XML stream processing systems always retrieve all the patterns in a query in the automaton. In contrast, Raindrop allows a plan to retrieve some of the pattern retrieval in the automaton and some out of the automaton. This opens up an automaton-in-or-out optimization opportunity. We study this optimization in two types of run-time environments, one with stable data characteristics and one with fluctuating data characteristics. We provide search strategies catering to each environment. We also describe how to migrate from a currently running plan to a new plan at run-time. Third, we optimize the automaton computations using the schema knowledge. A set of criteria are established to decide what schema constraints are useful to a given query. Optimization rules utilizing different types of schema constraints are proposed based on the criteria. We design a rule application algorithm which ensures both completeness (i.e., no optimization is missed) and minimality (i.e., no redundant optimization is introduced). The experimentations on both real and synthetic data illustrate that these techniques bring significant performance improvement with little overhead.
|
Page generated in 0.0362 seconds