• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Phase Relations in the YBa2Cu3O7-x - SiO2 System and the Impact on Superconducting Fibers

Heyl, Hanna Verena 24 October 2019 (has links)
This dissertation presents the first reported identification and analyses of the phase relations in the YBa2Cu3O7-x (YBCO)-SiO2 system at elevated temperatures. In this regard, a rigorous characterization study of the reaction phases within YBCO glass fibers, heat-treated YBCO+SiO2 pellets, rapid thermally annealed YBCO+SiO2 rods and rapid thermally annealed YBCO powder inside a fused silica tube is provided. These analyses are based on a vast set of generated novel results obtained using energy dispersive spectroscopy analyses on an environmental scanning electron microscope, X-Ray diffraction analyses, Raman spectroscopy, X-ray photoelectron spectroscopy analyses and a cross-polarized light study. First, original drawings of YBCO into glass fibers using the molten-core approach on a fiber draw tower in air and oxygen atmospheres are presented and analyzed. The performed analyses reveal the occurrence of reactions between the YBCO core and the silica cladding in as-drawn fibers as well as after additional heat-treatments. A detailed analysis and characterization of the occurring dissolution and diffusion based reaction processes is, then, provided along with the identification of the arising phase separation. Moreover, in order to analyze drawing YBCO glass fibers at lower temperatures, the use of borosilicate as the preform material is also investigated. This varied set of experiments and associated analyses reveal that the as-drawn YBCO fibers contain an amorphous core and that cuprite (Cu2O) is the first phase to crystallize out of the amorphous silicate matrix upon heat-treatment. Furthermore, the obtained results demonstrate the dissolution of the fused silica cladding into Si4+ and O2- ions and their subsequent diffusion into the molten YBCO core, leading to phase separation due to an occurring miscibility gap in the YBCO-SiO2 system as well as to silicate formation and amorphization of the YBCO core. This, as a result, prohibits the formation of the superconductive YBCO (Y-123) phase upon annealing. In addition, heat-treatment analyses show that higher temperatures or prolonged dwelling times at lower temperatures lead to the formation of barium copper and yttrium barium silicates. The analysis focusing on the use of borosilicate as the preform material reveals that drawing at lower temperatures reduces the dissolution and diffusion based reactions, but does not prevent them. Furthermore, the analysis on YBCO glass fibers with a fused silica cladding drawn in oxygen atmosphere shows that a higher oxygen content increases the dissolution of the fused silica cladding into its ions and their subsequent diffusion into the molten YBCO core. In addition, the performed heat-treatments on YBCO+SiO2 pellets in air and oxygen atmospheres demonstrate the gradual decomposition of the Y-123 phase with an increase in SiO2 content. Moreover, the rapid thermal annealing experiments with a subsequent quenching step on YBCO+SiO2 rods and on YBCO powder inserted inside a fused silica tube show the decomposition of the Y-123 phase and the formation of phases similar to the phases obtained in the YBCO glass fiber study, thus corroborating the results thereof. In summary, this dissertation enables the determination of the phase relations and reaction processes within the YBCO-SiO2 system, the identification of the direct effects of the silicon content on the Y-123 phase decomposition, as well as a rigorous characterization of the dissolution and diffusion based reactions within the YBCO-SiO2 glass-clad fiber system. The generated results and drawn conclusions build a fundamental understanding of phase relations in the YBCO-SiO2 system, which enables a definite assessment of the feasibility of manufacturing long-scale purely superconductive YBCO glass fibers using the molten-core approach and introduces advanced contributions to general glass-clad fiber systems manufactured using this method. / Doctor of Philosophy / This dissertation provides the first reported identification and analysis of the phase relations in the YBa2Cu3O7-x (YBCO)-SiO2 system at high temperatures. In this regard, a thorough characterization study of the reaction phases within YBCO glass fibers drawn using the molten-core approach on a fiber draw tower is provided. In addition, heat-treatment analyses considering YBCO+SiO2 pellets, rapid thermally annealed YBCO+SiO2 rods and rapid thermally annealed YBCO powder inside a fused silica tube are performed to gain further fundamental insights. The performed analyses are based on a wide set of characterization methods including energy dispersive spectroscopy on an environmental scanning electron microscope, X-Ray diffraction analyses, Raman spectroscopy, X-ray photoelectron spectroscopy and a cross-polarized light study. Our experimental results and performed analyses identify the phase relations and reaction processes within the YBCO-SiO2 system at elevated temperatures, demonstrate the direct effects of the silicon content on the superconductive YBCO phase decomposition, enable drawing definite conclusions regarding the feasibility of manufacturing long-scale purely superconductive YBCO glass fibers using the molten-core approach, and, characterize the dissolution and diffusion based reactions occurring within the YBCO-SiO2 glass-clad fiber system. In a nutshell, this dissertation provides a fundamental understanding of phase relations in the YBCO-SiO2 glass-clad system as well as key insights covering general glass-clad fibers drawn using the molten-core approach, paving the way for improved glass-clad fiber manufacturing using this method.

Page generated in 0.1102 seconds